Subscribe free to our newsletters via your
. 24/7 Space News .

Kennedy Supporting Effort to Develop Satellite Servicing Capabilities
by Bob Granath for Kennedy Space Center
Cape Canaveral FL (SPX) Oct 19, 2012

illustration only

With satellites playing increasingly important roles in everyday life, NASA is developing the technology to build Earth-orbiting, roving "service stations" capable of extending the life of these spacecraft.

Engineers at the Kennedy Space Center in Florida are assisting the space agency's Goddard Space Flight Center in Greenbelt, Md., in developing the concept for bringing a high-technology gas pump, robotic mechanic and tow truck to satellites in space.

There are 149 government-owned spacecraft and 275 commercial satellites currently in geosynchronous Earth orbit, or GEO, around the Earth. Placed 22,300 miles above the Earth, these satellites play key roles in communications, science, defense and weather monitoring.

GEO permits these spacecraft essentially to stay over the same point, allowing for constant coverage of a designated position. This is crucial for satellites relaying meteorology and television signals covering specific portions of the globe.

According to Tom Aranyos, technical integration manager in NASA's Fluids and Propulsion Division at Kennedy, engineers at the Florida spaceport are supporting the hypergolic propellant refueling portion of the Goddard-led study examining how free-flying servicing spacecraft could expand options in orbit for government and commercial satellite owners.

"America depends on satellites in geosynchronous orbit," said Aranyos. "These expensive spacecraft eventually develop systems failures or run out of propellant. Servicing and refueling these satellites can keep them operating longer and in the correct orbit, giving the nation and their owners more value for their investment."

Preliminary work with a technology demonstrator is underway on the International Space Station. The crew of space shuttle Atlantis' STS-135 flight delivered the Robotic Refueling Mission, or RRM, hardware to the station in July 2011.

During a spacewalk, astronauts Mike Fossum and Ron Garan transferred the RRM onto a temporary platform on the Special Purpose Dexterous Manipulator, also known as Dextre, a two-armed robot developed by the Canadian Space Agency that serves as part of the station's Mobile Servicing System. RRM now resides on the Express Logistics Carrier 4 platform outside the station.

Designed by the same team that developed the instruments and astronaut tools for the Hubble Space Telescope servicing missions, the four RRM tools cut and manipulate wires, unscrew caps, open and close valves and transfer fluid demonstrating that a remote-controlled robot can service and refuel a satellite in orbit.

In March 2012, the 12-foot Dextre performed the most intricate operation ever attempted by a space robot: cutting two twisted "lock wires," each 20 thousandths of an inch (0.5 millimeters) in diameter using the RRM Wire Cutter Tool.

The RRM refueling demonstration is scheduled to take place on the space station in the fall of 2012. Meanwhile, back on the ground, preparations are ramping up for a second set of activities and task boards to continue RRM operations through 2014.

Goddard's study and associated development campaign to advance Technology Readiness Levels, or TRLs, of satellite-servicing technologies are the next steps in building capabilities for a fully robotic maintenance vehicle that could service satellites, including those that were not originally intended to be serviced.

Goddard envisions a future in which servicer spacecraft equipped with a state-of-the-art navigation system, enhanced robotic arms and tools and a supply of propellant would be able to autonomously rendezvous and dock with a satellite needing aid.

Depending on the type of assistance needed, the servicing spacecraft could perform one of five "R" capabilities: refueling, repositioning, remote survey, component replacement or repairing an ailing satellite. The Goddard development campaign is designed to ensure that the capabilities and technologies are matured, vetted and ready for potential future servicing missions.

"Kennedy, as part of the Goddard team, is studying and performing preliminary tests for the design, development and qualification testing of the critical subsystem for an in-orbit hypergolic propellant transfer system," said Aranyos, who is leading Kennedy's technical team for the project.

"That will include a pumping system with high metering accuracy and hose management system to transfer propellant to multiple client locations on existing orbiting satellites."

Since May 2011, Aranyos' technical team has been developing a highly reliable, leak-free hypergolic propellant transfer module capable of high accuracy metering at high pressure, low flow rates. Hypergolic propellants such as nitrogen tetroxide, hydrazine and monomethyl hydrazine are the propellants most frequently used in satellites.

A key milestone in the Kennedy effort was completed in August with testing of the low-TRL "proof of concept" pump led by Brian Nufer who leads the propulsion subsystem team.

NASA engineers working with technicians from Sierra Lobo of Fremont, Ohio, under an institutional support contract to conduct the first simulation of proof-of-concept hardware to see how to pump highly corrosive, toxic, low viscosity (low thickness) and high density nitrogen tetroxide propellant at required transfer pressures.

"The operation was highly successful in that it showed that the experimental system worked as designed," Aranyos said. "It provided the engineering team with an enormous amount of performance data to better understand how the pump operates and provide lessons learned to be incorporated to the flight pump fabrication and operating procedures."

In the near future, Kennedy's engineering team will design and perform functional risk reduction tests on a propellant transfer module similar to a flight-like unit.

"It will be a full-scale engineering development unit," Aranyos said. "The propellant hose management system which completed initial proof-of-concept testing in May 2012 led by Erik Tormoen, of NASA's Launch Vehicle Electrical Systems Branch, is planning engineering development unit testing for the second quarter of fiscal year 2013."

Aranyos is pleased with the progress so far.

"This is a great partnership with Goddard," he said. "Through most of Kennedy's history, we have received, processed and launched vehicles developed at other centers. Over our 50-year history, we've developed an extensive knowledge base and diverse capabilities. Projects such as this give us an opportunity to put that expertise to work."


Related Links
Kennedy Space Center
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

OG2 Prototype Hardware Functionality Verified Prior to Deorbit
Fort Lee, NJ (SPX) Oct 15, 2012
ORBCOMM Inc. reports that the single prototype of its second generation of satellites (OG2), launched as a secondary mission payload on the Cargo Re-Supply Services (CRS-1) mission of October 7, 2012, verified various functionality checkouts prior to its deorbit. The OG2 prototype was deployed into a lower orbit as the result of a pre-imposed safety check required by NASA. The safety check ... read more

Model reconciles Lunar Earth composition with giant impact theory

Massive planetary collision may have zapped key elements from moon

Proof at last: Moon was created in giant smashup

Giant smashup created the Moon, say scientists

Rover eyes 'man-made' objects in Martian dirt

Opportunity Is On The Move Around 'Matijevic Hill'

NMSU Graduate Student Looks For Indications Of Life On Mars In Possible Trace Methane Gas

Rover's Second Scoop Discarded, Third Scoop Commanded

NASA must reinvest in nanotechnology research, according to new Rice University paper

Austrian space diver no stranger to danger

Baumgartner feat boosts hopes for imperilled astronauts

Austrian breaks sound barrier in record space jump

China launches civilian technology satellites

ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

ISS Orbit to be Adjusted for Next Spacecraft

Crew Unloads Dragon, Finds Treats

Station Crew Opens Dragon Hatch

NASA and International Partners Approve Year Long ISS Stay

AFSPC commander convenes AIB

Proton Lofts Intelsat 23 For Americas, Europe and Africa Markets

India to launch 58 space missions in next 5 years

SpaceX Dragon Successfully Attaches To Space Station

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

Ultra-Compact Planetary System Is A Touchstone For Understanding New Planet Population

Nearest Star Has Earth Mass Planet

Taiwan temple to launch 'divine advice' app

Kennedy Supporting Effort to Develop Satellite Servicing Capabilities

Mapping The Universe In 3-D

Physicists crack another piece of the glass puzzle

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement