Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Keck: Twin 10-meter Telescopes Spot Double Dust Cloud
by Staff Writers
Kamuela HI (SPX) Sep 25, 2009


This diagram compares 51 Ophiuchi and its dust disks to the sun, planets and zodiacal dust in the solar system. Zones with larger dust grains are red; those with smaller grains are blue. Planet sizes are not to scale. Credit: NASA/GSFC/Marc Kuchner and Francis Reddy

Linking the twin, 10-meter telescopes in Hawaii, astronomers at the W. M. Keck Observatory discovered an extended, double-layered dust disk orbiting 51 Ophiuchi, a star that is 410 light-years from Earth. It is the first time the Keck Interferometer Nuller instrument has identified such a compact cloud around a star so far away.

The new data suggest that 51 Ophiuchi is a protoplanetary system with a dust cloud that orbits extremely close to its parent star, said University of Maryland astronomer Christopher Stark, who led the research team.

Keck Observatory operates one of the largest optical interferometers in the United States. The interferometer provides high precision resolution measurements equal to a telescope as large as the distance that separates the telescope's primary mirrors - 85 meters in the case of the Keck twins.

In April 2007, the team simultaneously pointed both Keck telescopes at the star 51 Ophiuchi, or 51 Oph, and used the Interferometer's Nuller, a technique to combine the incoming light in a particular way, to block the unwanted starlight of 51 Oph and measure faint adjacent signals from the dust cloud surrounding the star.

According to the observations, excess material orbited 51 Oph. Stark and his collaborators repeated the nulling measurements at several different wavelengths of light and combined this data with information from other telescopes to determine the shape and orientation of the material as well as the sizes of the dust grains.

The data suggest that two debris disks orbit 51 Oph. The inner disk has larger grains, roughly 10 micrometers or larger in diameter, and extends out to four astronomical units, or AUs, beyond the star. The second disk comprised of mainly 0.1 micrometer grains extends from roughly seven AU to 1200 AU. One AU is the distance between Earth and the Sun or roughly 93 million miles. The new results appear in the Oct. 1 Astrophysical Journal.

If these debris disks orbited the Sun, the inner cloud of larger grains would extend roughly from the position of Mercury's orbit to just past the edge of the asteroid belt. The outer disk of smaller grains would originate just before Saturn's orbit and extend to a distance ten times farther than the edge of the Kuiper belt.

51 Oph's inner, compact dust disk is one of the most compact dust clouds ever detected, and the new Keck Interferometer Nuller observations demonstrate the instrument's ability to detect dust clouds a hundred times smaller than a conventional telescope can observe, Stark said.

The instrument was also essential to solving the mystery of what made 51 Oph's dust disk appear so compact while its spectra, or chemical fingerprints, suggested that the dust orbited at much larger distances, added Marc Kuchner, an astronomer at NASA's Goddard Space Flight Center in Greenbelt, Md. who was part of the research team. The answer was simply that the star had two debris disks.

Because of the power of the Keck Nuller, Stark and his team were able to resolve inner and outer dust disks, which together form 51 Oph's exozodiacal cloud. In similar star systems, the outer cloud of dust seems to be a distinct outer belt, probably analogous to the Kuiper belt or a second system of asteroids.

But 51 Oph appears to be different, Kuchner said. The observations suggest that the star's outer cloud is comprised of smaller grains and is connected to the inner cloud so that the system has only one underlying belt of asteroids.

This system most likely represents a rare, nearby example of a young planetary system just entering the late stages of planet formation. Terrestrial planets may be forming, although none have been detected within the system yet, Stark said.

His team's data also indicates that the cloud around 51 Oph is 100,000 times more dense than the dust cloud circling the Solar System. In most planet-forming systems, as asteroid and comet collisions produce dust, the larger grains spiral toward the star while its outward pressure pushes smaller particles to the edge or even out of the system.

51 Ophiuchi, a star 260 times more luminous than the Sun, likely pushes the smaller dust grains from the inner disk to the outer disk, Kuchner explained.

Keck's Nuller, which was funded by NASA and built by the Jet Propulsion Laboratory in Pasadena, Calif., will be used to help astronomers further understand how and when these asteroid belts form and how dust from the star's debris disk might interfere with direct imaging of planets orbiting another star, he said.

.


Related Links
W. M. Keck Observatory
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
LOFAR Takes The Long View Across Borders
Effelsberg. Germany (SPX) Sep 24, 2009
An international group of astronomers have succeeded in the first joint observations between the LOFAR stations in Exloo (The Netherlands) and Effelsberg (Germany). This constitutes the "first light" of the LOFAR telescope as an international array. The bright quasar 3C 196, located almost ten billion light years away from Earth, was detected successfully on 2009 August 20 providing first "inter ... read more


SPACE SCOPES
Deep Impact And Other Spacecraft Find Clear Evidence Of Water On Moon

Saudi aims for the moon with new hi-tech research oasis

Team Selenokhod Enters Google Lunar X PRIZE Competition

Team Selenokhod Enters Google Lunar X PRIZE Competition

SPACE SCOPES
Radar Map Of Buried Mars Layers Matches Climate Cycles

MARSIS Data Reveal New Method To Measure The Magnetic Field Of Mars

Scientists See Water Ice In Fresh Craters On Mars

Phobos Grunt Including Phobos LIFE Delayed Until 2011

SPACE SCOPES
Dragon/Falcon 9 Update

NASA Sets Target Date For Ares I-X Rocket's Test Launch

Augmented Reality To Help Astronauts Make Sense Of Space

Augmented Reality To Help Astronauts Make Sense Of Space

SPACE SCOPES
China says will push space programme to catch up West

China Begins New Space Center Construction

China breaks ground on new space launch centre: state media

Rocket Hiccup No Jam-Up For China

SPACE SCOPES
ESA Calls For Ideas For Climate Change Studies From ISS

Progress M-67 Undocks From ISS

Valet Parking In Space

Japan's cargo ship docks at International Space Station

SPACE SCOPES
Indian rocket launches seven satellites

Seventh Ariane 5 For Launch In 2009 Arrives At The Spaceport

Boeing, NASA mull commercial space travel

Amazonas 2 Satellite Integrated For Launch

SPACE SCOPES
NASA's Spitzer Spots Clump Of Swirling Planetary Material

Spitzer Spots Clump Of Swirling Planetary Material

Mass And Density Of Smallest Exoplanet Finally Measured

Large planet found outside solar system

SPACE SCOPES
NASA works on space age coating

Innovative LockMart-Built Satellite System Operating On Orbit

Switzerland Has Sent Its First Satellite Into Space

EU calls for greener windows, taps




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement