Subscribe free to our newsletters via your
. 24/7 Space News .

JWST Spinoff Technologies Already Seen in Some Industries
by Rob Gutro for Goddard Space Flight Center
Greenbelt, MD (SPX) Apr 23, 2012

The PhaseCam measuring an optic inside an Environmental Chamber. Courtesy Ball Aerospace Boulder Colorado.

A critical component of the James Webb Space Telescope is its new technology. Much of the technology for the Webb had to be conceived, designed and built specifically to enable it to see farther back in time. As with many NASA technological advances, some of the innovations are being used to benefit humankind in many other industries.

The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

New technologies developed for NASA's James Webb Space Telescope have already been adapted and applied to commercial applications in various industries including optics, aerospace, astronomy, medical and materials. Some of these technologies can be explored for use and licensed through NASA's Office of the Chief Technologist at NASA's Goddard Space Flight Center, Greenbelt, Md.

Optics Industry: Telescopes, Cameras and More
The optics industry has been the beneficiary of a new stitching technique that is an improved method for measuring large aspheres. An asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

Stitching is a method of combining several measurements of a surface into a single measurement by digitally combining the data as though it has been "stitched" together.

Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from NASA's Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres.

QED developed the SSI-A, which earned the company an "R and D 100" award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography.

Aerospace and Astronomy:
In the aerospace and astronomy industries, the Webb program gave 4D Technology its first commercial contract to develop the PhaseCam Interferometer system, which measures the quality of the Webb telescope's mirror segments in a cryogenic vacuum environment. This is a new way of using interferometers in the aerospace sector.

An interferometer is a device that separates a beam of light into two beams, usually by means of reflection, and then brings the beams together to produce interference, which is used to measure wavelength, index of refraction, and also distances.

Interferometry involves the collection of electromagnetic radiation using two or more collectors separated by some distance to produce a sharper image than each telescope could achieve separately.

The PhaseCam interferometer verified that the surfaces of the Webb telescope's mirror segments were as close to perfect as possible, and that they will remain that way in the cold vacuum of space. To test the Webb mirror segments, they were placed in a "cryovac" environment, where air is removed by a vacuum pump and temperatures are dropped to the extreme cold of deep space that the space craft will experience. A new dynamic interferometric technique with very short exposures that are not smeared by vibration was necessary to perform these measurements to the accuracy required, particularly in the high-vibration environment caused by the vacuum chamber's pumps.

The interferometer resulting from this NASA partnership can be used to evaluate future mirrors that need to be tested in vacuum chambers where vibration is a problem.

Medical Industry: Eye Health
New "wavefront" optical measurement devices and techniques were created for making the Webb telescope mirrors. Those have led to spinoffs in the medical industry where precise measurements are critical in eye health, for example.

The technology came about to accurately measure the James Webb Space Telescope primary mirror segments during manufacturing. Scientists at AMO WaveFront Sciences, LLC of Albuquerque, N.M. developed a new "wavefront" measurement device called a Scanning Shack Hartmann Sensor.

The optical measuring technology developed for the Webb, called "wavefront sensing" has been applied to the measurement of the human eye and allowed for significant improvements.

"The Webb telescope program has enabled a number of improvements in measurement of human eyes, diagnosis of ocular diseases and potentially improved surgery," said Dan Neal, Director of Research and Development Abbott Medical Optics Inc. in Albuquerque, N.M. The Webb improvements have enabled eye doctors to get much more detailed information about the shape and "topography" of the eye in seconds rather than hours.

Materials Industry: Measuring Strength
Webb technologies have opened the door to better measurement in testing the strength of composite materials. Measuring strain in composite materials is the same as measuring how much they change in certain environments. Measuring step heights allows one to understand very small changes in a surface profile and doing all of this at high speed allows the device to work even in the presence of vibration that would normally blur the results.

"Technology developed for the Webb telescope has also helped 4D Technologies, Inc. to develop unique technology to measure strain in composite materials, to measure step heights in precision machined surfaces, and for high speed wavefront detection," said James Millerd, President, 4D Technology Corporation, Tucson, Ariz.

Webb telescope technologies have also been beneficial to the economy. The technologies have enabled private sector companies such as 4D to generate significant revenue and create high-skill jobs.

Much of 4D's growth from a two man start-up to over 35 people can be traced to projects originally developed for the telescope. 4D has also been able to adapt these technologies for a wide range of applications within the astronomy, aerospace, semiconductor and medical industries.


Related Links
James Webb Space Telescope
Office of the Chief Technologist
4D Technology
The latest information about the Commercial Satellite Industry

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

UK supports space innovation overseas
Guildford UK (SPX) Apr 19, 2012
Minister for Universities and Science David Willetts has announced a 6 million pounds co-funded grant for commercial products and services developments from space-based systems and technology. SSTL is leading one of four projects that will benefit, as part of the National Space Technology Programme (NSTP), delivered through the UK Space Agency and the Technology Strategy Board (TSB). The f ... read more

Winners of 19th Annual NASA Great Moonbuggy Race Announced

Russian Space Agency eyes Moon explorations

Russia postpones Luna-Glob moon mission

Russia Plans to Launch Lunar Rovers to Moon after 2020

Opportunity Benefits From Brighter Skies and Small Dust Cleaning of Solar Panels

Human health on Mars mission discussed

Bringing Mars Back to Earth

Asteroid Craters On Earth Give Clues In Search For Life On Mars

Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

NASA Announces 16th Undersea Exploration Mission Dates and Crew

Dwindling US Space Budget Worries Scientist

China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

Russian cargo ship docks at International Space Station

Russian Cargo Craft Launches to Station

Commercial Platform Offers Exposure at ISS

Learn to dock ATV the astronaut way

Aerojet Delivers 50th Flight-Ready Solid Rocket Booster to ULA

SpaceX said eyeing Texas launch site

Lockheed Martin Names New Leader for Commercial Launch Services Business

A double arrival for Arianespace's next dual-payload Ariane 5 mission

Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

When Stellar Metallicity Sparks Planet Formation

New Research Could Mean Cellphones That Can See Through Walls

SciTechTalk: Apple rumors du jour

US judge allows tech 'poaching' suit to proceed

Hollywood studios lose landmark download case

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement