Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TECH SPACE
JILA physicists achieve elusive 'evaporative cooling' of molecules
by Staff Writers
Washington DC (SPX) Dec 21, 2012


JILA researchers developed a new magnetic trap and a new technique to achieve "evaporative cooling" of hydroxyl molecules (one hydrogen atom bonded to one oxygen atom). A microwave pulse at a specific frequency converts hot molecules inside the trap to a slightly different energy state. A small electric field is pulsed on briefly to destabilize and eject these converted molecules from the trap. As the microwave frequency is slowly altered, molecules distributed inside the trap (which has a varied magnetic field strength) are progressively converted and removed from the top of the trap, where molecules are hotter, to the bottom, where molecules are cooler. Credit: Baxley and Ye Group/JILA.

Achieving a goal considered nearly impossible, JILA physicists have chilled a gas of molecules to very low temperatures by adapting the familiar process by which a hot cup of coffee cools. Evaporative cooling has long been used to cool atoms, at JILA and elsewhere, to extraordinarily low temperatures. The process was used at JILA in 1995 to create a then-new state of matter, the Bose-Einstein condensate (BEC) of rubidium atoms.

The latest demonstration, reported in Nature, marks the first time evaporative cooling has been achieved with molecules-two different atoms bonded together.

JILA researchers cooled about 1 million hydroxyl radicals, each composed of one oxygen atom and one hydrogen atom (OH), from about 50 milliKelvin (mK) to 5 mK, five-thousandths of a degree above absolute zero. The 70-millisecond process also made the cloud 1,000 times denser and cooler.

With just a tad more cooling to below 1 mK, the new method may enable advances in ultracold chemistry, quantum simulators to mimic poorly understood physical systems, and perhaps even a BEC made of highly reactive molecules.

The same JILA group previously used magnetic fields and lasers to chill molecules made of potassium and rubidium atoms to temperatures below 1 microKelvin.** But the new work demonstrates a more widely usable method for cooling molecules that is potentially applicable to a wide range of chemically interesting species.

"OH is a hugely important species for atmospheric and combustion dynamics," says JILA/NIST Fellow Jun Ye, the group leader. "It is one of the most prominently studied molecules in physical chemistry.

"Now with OH molecules entering the ultracold regime, in addition to potassium-rubidium molecules, a new era in physical chemistry will be upon us in the near future."

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado (CU) Boulder. The results are the first to be published from the first experiments conducted in JILA's new X-Wing, which opened earlier this year. JILA theorist John Bohn collaborated with Ye's group.

In evaporative cooling, particles with greater-than-average energy depart, leaving a cooler and denser system behind. Unlike coffee, however, the trapped hydroxyl molecules have to be tightly controlled and manipulated for the process to work.

If too many particles react rather than just bounce off each other, they overheat the system. Until now, this was widely seen as a barrier to evaporative cooling of molecules. Molecules are more complicated than atoms in their energy structures and physical motions, making them far more difficult to control.

To achieve their landmark result, Ye's group developed a new type of trap that uses structured magnetic fields to contain the hydroxyl molecules, coupled with finely tuned electromagnetic pulses that tweak the molecules' energy states to make them either more or less susceptible to the trap.

The system allows scientists not only to control the release of the hotter, more energetic molecules from the collection, but also to choose which locations within the trap are affected, and which molecular energies to cull.

he result is an extremely fine level of control over the cooling system, gradually ejecting molecules that are physically deeper and relatively cooler than before.

JILA scientists say it appears feasible to cool OH molecules to even colder temperatures, perhaps to a point where all the molecules behave alike, forming the equivalent of a giant "super molecule."

This would enable scientists to finally learn some of the elusive basics of how molecules interact and develop novel ways to control chemical reactions, potentially benefitting atmospheric and combustion science, among other fields.

The research was funded by the National Science Foundation, Department of Energy, Air Force Office of Scientific Research and NIST. B.K. Stuhl, M.T. Hummon, M. Yeo, G. Quemener, J.L. Bohn and J. Ye. Evaporative cooling of the dipolar hydroxyl radical. Nature. Dec. 20, 2012.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Paper waste used to make bricks
Jaen, Spain (SPX) Dec 21, 2012
Researchers at the University of Jaen (Spain) have mixed waste from the paper industry with ceramic material used in the construction industry. The result is a brick that has low thermal conductivity meaning it acts as a good insulator. However, its mechanical resistance still requires improvement. "The use of paper industry waste could bring about economic and environmental benefits as it ... read more


TECH SPACE
GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

TECH SPACE
Opportunity For Some Shoulder Workout At Copper Cliff

Enabling ChemCam to Measure Key Isotopic Ratios on Mars and Other Planets

Curiosity Rover Explores 'Yellowknife Bay'

Curious About Life: Interview with Darby Dyer

TECH SPACE
White House to honor scientists, inventors

TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

NASA Progressing Toward First Launch of Orion Spacecraft

TECH SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

TECH SPACE
Three astronauts blast off for ISS in Russian craft

Soyuz rocket brings trio to space station

ISS Orbit Raised Ahead of Crew Arrival

Station Crew Does Maintenance as Soyuz Rolls to Launch Pad

TECH SPACE
Ariane 5 ECA orbits Skynet 5D and Mexsat Bicentenario satellites

Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

ISRO planning 10 space missions in 2013

TECH SPACE
Nearby star is good candidate for Earth-like planets

Venus transit and lunar mirror could help astronomers find worlds around other stars

Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

TECH SPACE
EU: Samsung injunctions against Apple breach rules

MEXSAT Bicentenario Satellite Sends First Signals from Space

JILA physicists achieve elusive 'evaporative cooling' of molecules

Sustainable way to make a prized fragrance ingredient




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement