Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Ions Control Shape Of Nanofibers Grown On Clear Substrate
by Staff Writers
Oak Ridge TN (SPX) Aug 19, 2011


The nanofibers lean in different directions depending on where they are located in relation to the chromium grid, because the ions are being drawn to the grid and strike the catalysts at various angles.

Researchers from North Carolina State University, the Oak Ridge National Laboratory and CFD Research Corporation have found a new way to develop straight carbon nanofibers on a transparent substrate. Growing such nanofiber coatings is important for use in novel biomedical research tools, solar cells, water repellent coatings and others.

The technique utilizes a charged chromium grid, and relies on ions to ensure the nanofibers are straight, rather than curling - which limits their utility.

"This is the first time, that I know of, where someone has been able to grow straight carbon nanofibers on a clear substrate," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper describing the research.

"Such nanofibers can be used as gene-delivery tools. And a transparent substrate allows researchers to see how the nanofibers interact with cells, and to manipulate this interaction."

Specifically, the nanofibers can be coated with genetic material and then inserted into the nucleus of a cell - for example, to facilitate gene therapy research. The transparent substrate improves visibility because researchers can shine light through it, creating better contrast and making it easier to see what's going on.

The researchers also learned that ions play a key role in ensuring that the carbon nanofibers are straight. To understand that role, you need to know how the technique works.

The nanofibers are made by distributing nickel nanoparticles evenly on a substrate made of fused silicon (which is pure silicon dioxide). The substrate is then overlaid with a fine grid made of chromium, which serves as an electrode.

The substrate and grid are then placed in a chamber at 700 degrees Celsius, which is then filled with acetylene and ammonia gas. The chrome grid is a negatively charged electrode, and the top of the chamber contains a positively charged electrode.

Electric voltage is then applied to the two electrodes, creating an electric field in the chamber that excites the atoms in the acetylene and ammonia gas. Some of the electrons in these atoms break away, creating free electrons and positively charged atoms called ions. The free electrons accelerate around the chamber, knocking loose even more electrons. The positively charged ions are drawn to the negatively charged grid on the floor of the chamber.

Meanwhile, the nickel nanoparticles are serving as catalysts, reacting with the carbon in the acetylene gas (C2H2) to create graphitic carbon nanofibers.

The catalyst rides on the tip of the nanofiber that forms beneath it, like a rapidly growing pillar. The term graphitic means that the nanofibers have carbon atoms arranged in a hexagonal structure - like graphite.

One problem with growing carbon nanofibers is that the surface of the catalyst can become obstructed by a carbon film that blocks catalytic action, preventing further nanofibers growth. Here's where those ions come in.

The ions being drawn to the chromium grid are moving very quickly, and they choose the shortest possible route to reach the negatively-charged metal. In their rush to reach the grid, the ions often collide with the nickel catalysts, knocking off the excess carbon - and allowing further nanofibers growth. Video of the process is available here.

Because the ions are being drawn to the chromium grid, the angle at which they strike the catalysts depends on where the catalyst is located relative to the grid.

For example, if you are looking down at the grid, a catalyst just to the right of the grid will appear to be leaning right - because ions would have been striking the right side of the catalyst in an attempt to reach the grid. These nanofibers are still straight - they don't curl up - they simply lean in one direction. The bulk of the nanofibers, however, are both straight and vertically aligned.

"This finding gives us an opportunity to create new reactors for creating nanofibers, building in the chromium grid," Melechko says.

The paper, "Role of ion flux on alignment of carbon nanofibers synthesized by DC plasma on transparent insulating substrates," is forthcoming from the ACS journal Applied Materials and Interfaces. The paper was co-authored by Ryan Pearce, a Ph.D. student at NC State; Dr. Alexei Vasenkov of CFDRC; and Dale Hensley, Dr. Michael Simpson and Timothy McKnight of Oak Ridge National Laboratory. The research was supported by Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (processing, analytical microscopy, and experimental design). The device fabrication for cell interfacing was done through a user project at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory.

.


Related Links
North Carolina State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
A new look below the surface of nanomaterials
Davis CA (SPX) Aug 19, 2011
Scientists can now look deeper into new materials to study their structure and behavior, thanks to work by an international group of researchers led by UC Davis and the Lawrence Berkeley National Laboratory and published by the journal Nature Materials. The technique will enable more detailed study of new types of materials for use in electronics, energy production, chemistry and other app ... read more


NANO TECH
GRAIL Moon Twins are Joined to Their Booster

Moon younger than previously thought

GRAIL Launch Less Than One Month Away

The Lunar Farside And The Ancient Big Splat

NANO TECH
France, Russia talk of Mars mission

Possibility of Mars microbial life eyed

Arrival in the Arctic

Opportunity Reaches Endeavour Crater

NANO TECH
NASA Selects XCOR to Participate in Suborbital Flight Contract

NASA Selects Seven Firms To Provide Near-Space Flight Services

NASA moves forward in manned spaceflight

Russia space chief regrets focus on manned missions

NANO TECH
China satellite aborts mission after 'malfunction'

Pausing for Tiangong

Chinese orbiter fails to enter designated orbit due to rocket malfunction

No Toilet for Tiangong

NANO TECH
First 3D video transmission live from space

Robotic Refueling Module, Soon To Be Relocated to Permanent Space Station Position

SpaceX plans November test flight to space station

Crew Stows Spacesuits, Completes Robotics Checkout

NANO TECH
Russia loses contact with new satellite

China successfully launches maritime satellite

NASA selects Virgin Galactic for Suborbital Flights

Arabsat-5C is welcomed in French Guiana for Arianespace's next Ariane 5 launch

NANO TECH
Stellar eclipse gives glimpse of exoplanet

Alien World is Blacker than Coal

Strange planet is blacker than coal

Exoplanet Aurora Makes For An Out-of-this-World Sight

NANO TECH
HP surrenders as post-PC era beckons

Forecasting pipe fractures

Tests find thyroid radiation in Japanese children

First quantitative measure of radiation leaked from Fukushima reactor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement