Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
International team replicates amplification of cosmic magnetic fields
by Staff Writers
Chicago IL (SPX) Jun 03, 2014


This video simulation shows how a laser that illuminates a small carbon rod launches a complex flow, consisting of supersonic shocks and turbulent flow. When the grid is present, turbulence becomes dominant and the self-generated magnetic field is significantly amplified. The top half of the simulation illustrates gas density per cubic centimeter, while the bottom half depicts strength of magnetic field. Image courtesy University of Chicago Flash Center.

have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.

"Magnetic fields are ubiquitous in the universe," said Don Lamb, the Robert A. Millikan Distinguished Service Professor in Astronomy and Astrophysics at the University of Chicago. "We're pretty sure that the fields didn't exist at the beginning, at the Big Bang. So there's this fundamental question: how did magnetic fields arise?"

Helping to answer that question, which is of fundamental importance to understanding the universe, were millions of hours of supercomputer simulations at Argonne National Laboratory. Lamb and his collaborators, led by scientists at the University of Oxford, report their findings in an article published in the June 1 issue of Nature Physics.

The paper describes experiments at the Vulcan laser facility of the United Kingdom's Rutherford Appleton Laboratory that recreates a supernova (exploding star) with beams 60,000 billion times more powerful than a laser pointer. The research was inspired by the detection of magnetic fields in Cassiopeia A, a supernova remnant, which are approximately 100 times stronger than those in adjacent interstellar space.

Physics at multiple scales
"It may sound surprising that a tabletop laboratory experiment that fits inside an average room can be used to study astrophysical objects that are light years across," said Gianluca Gregori, professor of physics at Oxford. "In reality, the laws of physics are the same everywhere, and physical processes can be scaled from one to the other in the same way that waves in a bucket are comparable to waves in the ocean. So our experiments can complement observations of events such as the Cassiopeia A supernova."

Making the advance possible was the extraordinarily close cooperation between Lamb's team at UChicago's Flash Center for Computational Science and Gregori's team of experimentalists.

"Because of the complexity of what's going on here, the simulations were absolutely vital to inferring exactly what's going on and therefore confirming that these mechanisms are happening and that they are behaving in the way that theory predicts," said Jena Meinecke, graduate student in physics at Oxford and lead author of the Nature Physics paper.

Magnetic fields range from quadrillionths of a gauss in the cosmic voids of the universe, to several microgauss in galaxies and galaxy clusters (ordinary refrigerator magnets have magnetic fields of approximately 50 gauss). Stars like the sun measure thousands of gauss. Neutron stars, which are the extremely compact, burned out cores of dead stars, exhibit the largest magnetic fields of all, ones exceeding quadrillions of gauss.

In 2012, Gregori's team successfully created small magnetic fields, called "seed fields," in the laboratory via an often-invoked effect called the Biermann battery mechanism. But how could seed fields grow to gigantic sizes in interstellar space? Building on their earlier findings, Gregori and his collaborators at 11 institutions worldwide now have demonstrated the amplification of magnetic fields by turbulence.

In their experiment, the scientists focused laser beams onto a small carbon rod sitting in a chamber filled with a low-density gas. The lasers, generating temperatures of a few million degrees, caused the rod to explode, creating a blast that expanded throughout the gas.

"The experiment demonstrated that as the blast of the explosion passes through the grid it becomes irregular and turbulent, just like the images from Cassiopeia," Gregori said.

Experimental variables
"The experimentalists knew all the physical variables at a given point. They knew exactly the temperature, the density, the velocities," said UChicago research scientist Petros Tzeferacos, a study co-author. Tzeferacos and his colleagues incorporated that data into their FLASH simulations.

"This allows us to benchmark the code against something that we can see," Tzeferacos said. Such benchmarking-called validation-shows that the simulations can reproduce the experimental data. The simulations consumed 20 million processing hours on both the Mira and Intrepid supercomputers at Argonne. Mira, which can perform 10 quadrillion calculations per second, is 20 times faster than Intrepid.

With validation in hand, all members of the collaboration could return repeatedly to the simulations to get answers to new questions regarding the physics they saw. "We could look at the velocity instead of the density of the magnetic field, or we might look at the pressure," Lamb said. "This simulation is a treasure trove of information about what's really going on. It's actually critical to understanding correctly what's really happening."

The magnetic field simulations were made possible by the addition of capabilities to the FLASH Code in recent years, funded by the Office of Advanced Simulation and Computing in the Department of Energy's National Nuclear Security Agency. Originally designed to support computer simulations of exploding stars, FLASH Code also now supports high-energy density physics simulations to better understand the properties of matter at high densities and high temperatures.

"Turbulent amplification of magnetic fields in laboratory laser-produced shock waves," by J. Meinecke and 26 others, Nature Physics, June 1, 2014.

.


Related Links
University of Chicago
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Universe breaks its fever
Melbourne, Australia (SPX) May 22, 2014
An international team, led by researchers from Swinburne University of Technology, has found evidence that the Universe broke its rising 'fever' about 11 billion years ago. They measured the temperature of the Universe when it was 3 to 4 billion years old by studying the gas in between galaxies - the intergalactic medium. During these early years of the Universe's development, many extremely act ... read more


TIME AND SPACE
Earth's gravitational pull stretches moon surface

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

Water in moon rocks provides clues and questions about lunar history

NASA Invites Public to Select Favorite Moon Image for Lunar Orbiter Anniversary Collection

TIME AND SPACE
LDSD Testing for Large Payloads to Mars

New Mars Lander to Probe Interior of Red Planet

A habitable environment on Martian volcano

Mars Curiosity rover may have transported Earth bacteria to Mars

TIME AND SPACE
SpaceX founder unveils his 'future of space travel' capsule

First Phase To Certify New US Space Transport System Completed

NASA faces identity crisis, funding battle

US may lose 'star wars' to Russia

TIME AND SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TIME AND SPACE
Russian Soyuz with New Crew Docks at ISS in Automatic Mode

Russian, German and US astronauts dock with ISS

Six-Person Station Crew Enjoys Day Off Following Docking

ESA astronaut Alexander Gerst arrives at ISS

TIME AND SPACE
SpaceX unveils capsule to ferry astronauts to space

Roscosmos Scolded for 'Pestering Society' with Proton Crash Theories

Elon Musk to present manned DragonV2 spacecraft on May 29

Russia puts satellite in orbit from sea platform after 2013 flop

TIME AND SPACE
'Godzilla' of Earths circles distant star

Astronomers find a new type of planet: The 'mega-Earth'

Because you can't eat just one: Star will swallow two planets

'Neapolitan' exoplanets come in three flavors

TIME AND SPACE
Russia preparing to launch Okno space surveillance system at full capacity

Citizen Scientists Contact Vintage Spacecraft

New Method of Wormlike Motion Lets Gels Wiggle through Water

Stronger than steel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.