Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Inclined Orbits Prevail In Exoplanetary Systems
by Staff Writers
Tokyo, Japan (SPX) Jan 17, 2011


Illustration of the HAT-P-11 System Based on Observations from Subaru Telescope. The planet orbits the star in a highly inclined orbit.

A research team led by astronomers from the University of Tokyo and the National Astronomical Observatory of Japan (NAOJ) has discovered that inclined orbits may be typical rather than rare for exoplanetary systems.

Their measurements of the angles between the axes of the star's rotation (stellar rotational axis) and the planet's orbit (planetary orbital axis) of exoplanets HAT-P-11b and XO-4b demonstrate that these exoplanets' orbits are highly tilted.

This is the first time that scientists have measured the angle for a small planet like HAT-P-11 b. The new findings provide important observational indicators for testing different theoretical models of how the orbits of planetary systems have evolved.

Since the discovery of the first exoplanet around a normal star in 1995, scientists have identified more than 500 exoplanets, nearly all of which are giant planets and most of which closely orbit their host stars.

Accepted theories propose that these giant planets originally formed from abundant planet-forming materials far from their host stars and then migrated to their current close locations. Different migration processes have been suggested to explain close-in giant exoplanets.

Disk-planet interaction models of migration focus on interactions between the planet and its protoplanetary disk. Sometimes interactions between the protoplanetary disk and the forming planet result in forces that make the planet fall toward the central star. These models predict that the spin axis of the star and the orbital axis of the planet will be in alignment with each other.

Planet-planet interaction models of migration have focused on mutual scatterings among giant planets during the creation of two or more giant planets within the protoplanetary disk. Although some of the planets scatter from the system, the innermost one may establish a final orbit very close to the central star.

Another planet-planet interaction scenario, Kozai migration, postulates that the long-term gravitational interaction between an inner giant planet and another celestial object may alter the planet's orbit, moving an inner planet closer to the central star. Such planet-planet migration scenarios could produce an inclined orbit between the planet and the stellar axis.

Overall, the inclination of the orbital axes of close-in planets relative to the host stars' spin axes emerges as a very important observational basis for supporting or refuting migration models upon which theories of orbital evolution center.

A research group led by astronomers from the University of Tokyo and NAOJ concentrated their observations with the Subaru Telescope on investigating these inclinations for two systems known to have planets: HAT-P-11 and XO-4. The group measured the Rossiter-McLaughlin (hereafter RM) effect of the systems and found evidence that their orbital axes incline relative to the spin axes of their host stars.

The RM effect refers to apparent irregularities in the radial velocity or speed of a celestial object in the observer's line of sight during planetary transits. Unlike the spectral lines that are generally symmetrical in measures of radial velocity, those with the RM effect deviate into an asymmetrical pattern.

Such apparent variation in radial velocity during a transit reveals the sky-projected angle between the stellar spin axis and planetary orbital axis. Subaru Telescope has participated in previous discoveries of the RM effect, which scientists have investigated for approximately thirty-five exoplanetary systems thus far.

In January 2010, a research team led by the current team's astronomers from the University of Tokyo and the National Astronomical Observatory of Japan used the Subaru Telescope to observe the planetary system XO-4, which lies 960 light-years away from Earth in the Lynx region. The system's planet is about 1.3 times as massive as Jupiter and has a circular orbit of 4.13 days.

Their detection of the RM effect showed that the orbital axis of the planet XO-4 b tilts to the spin axis of the host star. Only the Subaru Telescope has measured the RM effect for this system so far.

In May and July 2010, the current research team conducted targeted observations of the HAT-P-11 exoplanetary system, which lies 130 light-years away from the Earth toward the constellation Cygnus. The Neptune-sized planet HAT-P-11 b orbits its host star in a non-circular (eccentric) orbit of 4.89 days and is among the smallest exoplanets ever discovered.

Until this research, scientists had only detected the RM effect for giant planets. The detection of the RM effect for smaller-sized planets is challenging because the signal of the RM effect is proportional to the size of the planet; the smaller the transiting planet, the fainter the signal.

The team took advantage of the enormous light-collecting power of the Subaru Telescope's 8.2m mirror as well as the precision of its High Dispersion Spectrograph.

Their observations not only resulted it the first detection of the RM effect for a smaller Neptune-sized exoplanet but also provided evidence that the orbital axis of the planet inclines to the stellar spin axis by approximately 103 degrees in the sky.

The current team's observations of the RM effect for the planetary systems HAT-P-11 and XO-4 have shown that they have planetary orbits highly tilted to the spin axes of their host stars.

The latest observational results about these systems, including those obtained independently of the findings reported here, suggest that such highly inclined planetary orbits may commonly exist in the universe. Planet-planet interaction models of migration, whether caused by planet-planet scattering or Kozai migration could account for their migration to the present locations.

However, measurements of the RM effect for individual systems cannot definitively discriminate between the migration scenarios. Since different migration models predict different distributions of the angle between the stellar axis and planetary orbit, developing a large sample of the RM effect enables scientists to perform statistical analyses to support the most plausible migration process.

A sample's inclusion of the measurements of the RM effect for such a small-sized planet as HAT-P-11 b will play an important role in understanding the formation and migration history of planetary systems.

.


Related Links
University of Tokyo
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Planet Affects A Star's Spin
Villanova PA (SPX) Jan 13, 2011
The discovery of a hot Jupiter exoplanet that transfers orbital momentum to its host star may hold the key to a clearer understanding of the evolution of common planetary systems, according to findings presented by Dr. Edward Guinan, a professor of astronomy at Villanova University in Villanova, Pa. Guinan announced the find at a press conference held at the opening of the 217th American A ... read more


EXO WORLDS
Lunar water may have come from comets - scientists

Moon Has Earth-Like Core

The Hunt For The Lunar Core

Rocket City Space Pioneers Announce Partnership With Solidworks

EXO WORLDS
Scanning The Red Planet

Mars Desert Research Station 2011 Field Season Begins

Rover Continues To Explore Santa Maria Crater

NASA tries to awaken mars rover

EXO WORLDS
Space agencies challenge kids to 'train like astronauts'

Voyager spacecraft going strong at age 33

Taiwan develops face-recognising vending machine

Space oddities go on auction in US

EXO WORLDS
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

EXO WORLDS
ATV Johannes Kepler Gears Up For Space Journey

International Space Station and Mars Conference at George Washington University

Deal expands commercial travel to ISS

Extension of space station support fails

EXO WORLDS
ATM Is Readied For Its February Launch On Ariane 5

Arianespace Will Have A Record Year Of Launch Activity In 2011

2011: The Arianespace Family Takes Shape

Arianespace says it plans 12 launches in 2011

EXO WORLDS
Inclined Orbits Prevail In Exoplanetary Systems

Planet Affects A Star's Spin

Kepler Mission Discovers Its First Rocky Planet

NASA spots tiny Earth-like planet, too hot for life

EXO WORLDS
ViviSat Launched

Method Discovered To Determine When Metals Reach End Of Life

Launch of Murdoch's The Daily delayed: report

Google buys eBook Technologies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement