Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
Igniting the air for atmospheric research
by Staff Writers
Vienna, Austria (SPX) Feb 20, 2015


These are laser filaments in the air. Image courtesy TU Wien.

It looks a bit like a lightsaber from Star Wars: when an extremely intense laser pulse is sent through the air, it can focus itself, creating a narrow filament of light. By shooting such filaments into the sky and analysing back-scattered light, it would be possible to trace pollutants in the atmosphere.

To achieve this, lasers with mid-infrared wavelengths are required. However, reaching the critical power to produce such a filament with mid-infrared laser beams is very difficult. At these wavelengths, laser filaments have only been produced in high pressure gas tubes. Now, an Austro-Russian research team has succeeded in building a new kind of mid-infrared laser which is so intense that it ignites laser filaments in the air at normal atmospheric pressure.

Air that Acts Like a Lens
Normally, a beam of light is diffracted and diverges as it propagates. In order to focus the beam, some sort of lens is needed. "An intense laser pulse can create such a lens in the air by itself", says Audrius Pugzlys (Photonics Institute, Vienna University of Technology). The refractive index of air depends on the intensity of the beam. This intensity is not uniform, it is highest in the centre of the beam. This creates a focusing lens in the air.

"This laser-pulse-initiated lens acts back on the parent laser beam by focusing it and creating plasma, which then in turn tends to defocus the beam", says Skirmantas Alisauskas (Vienna University of Technology). The interplay between focusing and defocusing effects creates a narrow filament that can be dozens of centimeters or even a few meters long. By spatial and temporal shaping of the pulses, it is possible to control the position in the sky where the filament is created.

The Most Interesting Wavelengths are Infrared
"Once a shining laser filament is created, it generates broadband mid-infrared light, which can tell us about the chemical composition of the air", says Audrius Pugzlys. Many molecules absorb light in the mid-infrared spectral range in a very characteristic way, so that they can be identified.

Therefore, powerful laser beams in the mid-infrared range are needed to ignite the filaments and to make remote atmospheric sensing possible. But for a long time, such mid-infrared lasers generating very short and high-energy pulses have not been available.

A team of scientists at the Photonics Institute of Vienna University of Technology has been working for years on designing a high-energy ultrashort pulse source. "For some time, we have already been able to ignite filaments in high pressure gas tubes filled with nitrogen or oxygen. But now, we have finally succeeded in boosting the pulse energy to such a level that filaments are produced in air at normal pressure", says Skirmantas Alisauskas.

The experiment was conducted together with a research team from Russia, using a laser system which was installed in the Russian Quantum Centre in Moscow using the amplification technology developed in Vienna.

Next Step: A Laser in Mid-Air
The next steps are already being planned: In the lab, the team has demonstrated that it is possible to make the mid-infrared laser interact with nitrogen in such a way that it does not only create a shining plasma filament but that it turns the filament into a laser, shining a beam right back towards the infrared laser source.

"If we could obtain this effect in the filament in the atmosphere, we could create a laser in the sky. We would have two laser beams propagating along the same axis in opposite directions - one fired up by our laser source, the other fired back by the air itself", says Audrius Pugzlys.

"If the molecules in between are hit by two different lasers at the same time, it is possible to analyse them very accurately via nonlinear scattering processes." The mid-infrared laser filament device could one day be used to measure the concentration of pollutants above a city or to remotely detect harmful substances after a chemical accident.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Scientists try to unravel warming's impact on jet stream
Montreal (AFP) Feb 12, 2015
A winter of strange weather and turbulent transatlantic flights has scientists asking: Has a predicted climate imbalance of the jet stream begun? The Arctic is warming faster than other parts of the world, and scientists believe that is having a dramatic impact on the jet stream, which may be responsible for the unusual weather and stronger upper atmospheric winds of late. On January 8, ... read more


BLUE SKY
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

BLUE SKY
Scientists fail to explain strange plumes spotted on Martian surface

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

NASA's Curiosity Analyzing Sample of Martian Mountain

BLUE SKY
London workshop teaches nuts and bolts behind tech

Critical NASA Science Returns to Earth aboard SpaceX Dragon Spacecraft

45th Space Wing, SpaceX sign first-ever landing pad agreement at the Cape

Russian research team explores vision complications for astronauts

BLUE SKY
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

BLUE SKY
Europe destroys last space truck to ISS

NASA, Space Station Partners Announce Future Mission Crew Members

Camera to record doomed ATV's disintegration - from inside

ATV to bid farewell to Space Station for last time

BLUE SKY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX launches deep-space weather observatory

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

BLUE SKY
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

BLUE SKY
3-D printing with custom molecules creates low-cost mechanical sensor

See here now: Telescopic contact lenses and wink-control glasses

Getting in shape

Google, Mattel bring virtual reality to iconic toy




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.