Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Hubble movies reveal solar-system-sized traffic jams
by Staff Writers
Houston TX (SPX) Sep 01, 2011


Rice astronomer Patrick Hartigan displays a target from an experiment to re-create the physics of stellar jets on a small scale. Powerful lasers blasted a tiny plug of titanium inside the gold-coated cone, shooting the atomized material into a ball of foam-covered plastic. The experiment re-created some of the fluid dynamics that occur on a huge scale when newborn stars spew columns of high-speed gas and dust. Jeff Fitlow/Rice University

When it comes to big-budget action movies, Rice University astronomer Patrick Hartigan prefers Hubble to Hollywood. Using Hubble Space Telescope images collected over 14 years, Hartigan has created time-lapse movies that offer astronomers their first glimpse of the dynamic behavior of stellar jets, huge torrents of gas and particles that spew from the poles of newborn stars.

An analysis of the movies that was published in The Astrophysical Journal is forcing astronomers to rethink some of the processes that occur during the latter stages of star birth. And in an effort to learn even more, Hartigan and colleagues are using powerful lasers to recreate a small-scale version of the solar-system-sized jets in a lab in upstate New York.

"The Hubble's given us spectacular images," said Hartigan, professor of physics and astronomy at Rice. "In the nebulae where stars are born, for instance, we can see beautiful filaments and detailed structure. We know these images are frozen snapshots in time, but we would need to watch for hundreds of thousands of years to see how things actually play out."

Hartigan said stellar jets are different because they move very quickly. Stellar jets blast out into space from the poles of newly formed stars at about 600,000 miles an hour. Astronomers first noticed them about 50 years ago, and they believe the sun probably had stellar jets when it formed about 4.5 billion years ago.

Hartigan began using Hubble to collect still frames of stellar jets in 1994. The jets emerge from each pole of a young star, and Hartigan used Hubble to revisit the jets from three stars in 1994, 1998 and 2008. All three stars are about 1,350 light years from Earth. Two are near the Orion Nebula, and the third is in the southern sky in the constellation Vela.

By lacing the images together and using a computer to fill in what occurred between still frames, Hartigan and his collaborators created time-lapse movies. The movies clearly showed something that wasn't obvious in any of the still images; clouds of dust and gas within the jets move at different speeds.

"The bulk motion of the jet is about 300 kilometers per second," Hartigan said. "That's really fast, but it's kind of like watching a stock car race; if all the cars are going the same speed, it's fairly boring. The interesting stuff happens when things are jumbling around, blowing past one another or slamming into slower moving parts and causing shockwaves."

Understanding what happens in those huge collisions is another challenge. The phenomena didn't look like anything that Hartigan and his astronomer colleagues had seen. But when he showed them to colleagues who were familiar with the physics of nuclear explosions, they immediately saw patterns in the shockwaves that looked familiar.

"The fluid dynamicists immediately picked up on an aspect of the physics that astronomers typically overlook, and that led to a different interpretation for some of the features we were seeing," Hartigan explained. "The scientists from each discipline bring their own unique perspectives to the project, and having that range of expertise has proved invaluable for learning about this critical phase of stellar evolution."

Motivated by the results from Hubble, Hartigan and colleagues are conducting experiments at the Omega Laser Facility in Rochester, New York, to recreate small-scale versions of the solar-system-sized features captured in the movies.

"It's one more tool we have to better understand the underlying physics," Hartigan said.

In addition to Hartigan, the research team includes Adam Frank of the University of Rochester; John Foster and Paula Rosen of the Atomic Weapons Establishment in Aldermaston, U.K.; Bernie Wilde, Rob Coker and Melissa Douglas of Los Alamos National Laboratory in New Mexico; and Brent Blue and Freddy Hansen of General Atomics in San Diego, Calif.

A video is available here.

A copy of the paper in The Astrophysical Journal is available here

.


Related Links
Hartigan's Hubble Space Telescope movies
Rice University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
NASA's Wise Mission Discovers Coolest Class of Stars
Pasadena CA (JPL) Aug 31, 2011
Scientists using data from NASA's Wide-field Infrared Survey Explorer (WISE) have discovered the coldest class of star-like bodies, with temperatures as cool as the human body. Astronomers hunted these dark orbs, termed Y dwarfs, for more than a decade without success. When viewed with a visible-light telescope, they are nearly impossible to see. WISE's infrared vision allowed the telescop ... read more


STELLAR CHEMISTRY
Armstrong relives historic Moon landing

NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

STELLAR CHEMISTRY
Opportunity Studies Rocks on Crater Rim

Epic search for evidence of life on Mars heats up with focus on high-tech instruments

HDU Technologies Demonstrated in 2011 Field Testing

Filling the pantry for the first voyages to the Red Planet

STELLAR CHEMISTRY
FAA Spaceport grants will strengthen America's commercial space industry

NASA Aeronautics Is Focus Of Research And Technology Roundtable

New Report Analyzes Development Paths of Emerging Space Nations and Sustainable Use of Outer Space

First Soyuz launch from Kourou to go ahead: Arianespace

STELLAR CHEMISTRY
Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

Orbits for Tiangong

STELLAR CHEMISTRY
Progress 44 accident and its consequences for Space Station

Canadian Robot Repairs Components on the Space Station

Roscosmos plans to return three ISS crew members on Sept 16

Russia considering unmanned space station: official

STELLAR CHEMISTRY
Arianespace preps for next Ariane 5 mission to launch Arabsat-5c

Orbital Receives License for Taurus II COTS Demonstration Mission

Russian Space Taxi Goes on Strike

Express-AM4 Launch Failure Inter-Agency Commission Concludes Investigations

STELLAR CHEMISTRY
Greenhouse Effect Could Extend Habitable Zone

A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

Hubble to Target 'Hot Jupiters'

STELLAR CHEMISTRY
Lost Russian satellite poses threat to space navigation

New salts for chemical soups

Buzz at IFA electronics show is tablets, tablets, tablets

Scientists put a new spin on traditional information technology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement