Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE SCOPES
Hubble Shows Farthest Lensing Galaxy Yields Clues to Early Universe
by Staff Writers
Washington DC (SPX) Aug 05, 2014


The farthest cosmic lens yet found, a massive elliptical galaxy, is shown in the inset image at left. The galaxy existed 9.6 billion years ago and belongs to the galaxy cluster, IRC 0218. Image courtesy NASA and ESA. For a larger version of this image please go here.

Astronomers using NASA's Hubble Space Telescope have unexpectedly discovered the most distant galaxy that acts as a cosmic magnifying glass. Seen here as it looked 9.6 billion years ago, this monster elliptical galaxy breaks the previous record-holder by 200 million years.

These "lensing" galaxies are so massive that their gravity bends, magnifies, and distorts light from objects behind it, a phenomenon called gravitational lensing. Finding one in such a small area of the sky is so rare that you would normally have to survey a region hundreds of times larger to find just one.

The object behind the cosmic lens is a tiny spiral galaxy undergoing a rapid burst of star formation.

Its light has taken 10.7 billion years to arrive here and seeing this chance alignment at such a great distance from Earth is a rare find. Locating more of these distant lensing galaxies will offer insight into how young galaxies in the early universe build themselves up into the massive dark-matter-dominated galaxies of today. Dark matter cannot be seen, but it accounts for the bulk of the universe's matter.

"When you look more than 9 billion years ago in the early universe, you don't expect to find this type of galaxy lensing at all," explained lead researcher Kim-Vy Tran of Texas A and M University in College Station.

"It's very difficult to see an alignment between two galaxies in the early universe. Imagine holding a magnifying glass close to you and then moving it much farther away. When you look through a magnifying glass held at arm's length, the chances that you will see an enlarged object are high. But if you move the magnifying glass across the room, your chances of seeing the magnifying glass nearly perfectly aligned with another object beyond it diminishes."

Team members Kenneth Wong and Sherry Suyu of Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taipei, Taiwan, used the gravitational lensing from the chance alignment to measure the giant galaxy's total mass, including the amount of dark matter, by gauging the intensity of its lensing effects on the background galaxy's light.

The giant foreground galaxy weighs 180 billion times more than our sun and is a massive galaxy for its time. It is also one of the brightest members of a distant cluster of galaxies, called IRC 0218.

"There are hundreds of lens galaxies that we know about, but almost all of them are relatively nearby, in cosmic terms," said Wong, first author on the team's science paper.

"To find a lens as far away as this one is a very special discovery because we can learn about the dark-matter content of galaxies in the distant past. By comparing our analysis of this lens galaxy to the more nearby lenses, we can start to understand how that dark-matter content has evolved over time."

The team suspects the lensing galaxy continued to grow over the past 9 billion years, gaining stars and dark matter by cannibalizing neighboring galaxies. Tran explained that recent studies suggest these massive galaxies gain more dark matter than stars as they continue to grow.

Astronomers had assumed dark matter and normal matter build up equally in a galaxy over time, but now know the ratio of dark matter to normal matter changes with time. The newly discovered distant lensing galaxy will eventually become much more massive than the Milky Way and will have more dark matter, too.

Tran and her team were studying star formation in two distant galaxy clusters, including IRC 0218, when they stumbled upon the gravitational lens. While analyzing spectrographic data from the W.M. Keck Observatory in Hawaii, Tran spotted a strong detection of hot hydrogen gas that appeared to arise from a giant elliptical galaxy. The detection was surprising because hot hydrogen gas is a clear signature of star birth.

Previous observations showed that the giant elliptical, residing in the galaxy cluster IRC 0218, was an old, sedate galaxy that had stopped making stars a long time ago. Another puzzling discovery was that the young stars were at a much farther distance than the elliptical galaxy. Tran was very surprised, worried and thought her team made a major mistake with their observations.

The astronomer soon realized she hadn't made a mistake when she looked at the Hubble images taken in blue wavelengths, which revealed the glow of fledgling stars. The images, taken by Hubble's Advanced Camera for Surveys and the Wide Field Camera 3, revealed a blue, eyebrow-shaped object next to a smeared blue dot around the massive elliptical.

Tran recognized the unusual features as the distorted, magnified images of a more distant galaxy behind the elliptical galaxy, the signature of a gravitational lens.

To confirm her gravitational-lens hypothesis, Tran's team analyzed Hubble archival data from two observing programs, the 3D-HST survey, a near-infrared spectroscopic survey taken with the Wide Field Camera 3, and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, a large Hubble deep-sky program. The data turned up another fingerprint of hot gas connected to the more distant galaxy.

The distant galaxy is too small and far away for Hubble to determine its structure. So, team members analyzed the distribution of light in the object to infer its spiral shape. In addition, spiral galaxies are more plentiful during those early times.

The Hubble images also revealed at least one bright compact region near the center. The team suspects the bright region is due to a flurry of star formation and is most likely composed of hot hydrogen gas heated by massive young stars. As Tran continues her star-formation study in galaxy clusters, she will be hunting for more signatures of gravitational lensing.

.


Related Links
Hubble
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE SCOPES
Diving for pearls with the Hubble Space Telescope
Rochester NY (SPX) Jul 16, 2014
Stars forming like a string of blue pearls along two elliptical galaxies could be the result of a galactic merger, according to an international team of astronomers. The structure could reveal rare insights about elliptical galaxies. Scientists from Rochester Institute of Technology helped analyze data from the Hubble Space Telescope showing elliptical galaxies coalescing at the core of a ... read more


SPACE SCOPES
Manned Moon Mission to Cost Russia $2.8 Bln

Tidal forces gave moon its shape

Riddle of bulging Moon solved at last

China's biggest moon challenge: returning to earth

SPACE SCOPES
Los Alamos Laser Selected for 2020 Mars Mission

NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before

Mars 2020 rover will carry tools to make oxygen

NASA Long-Lived Mars Opportunity Rover Passes 25 Miles of Driving

SPACE SCOPES
Captains of industry explore space's new frontiers

Perlan partners with Airbus to fly glider to edge of space

First synthetic biological leaf could allow humans to colonize space

NASA's IBEX and Voyager spacecraft drive advances in outer heliosphere research

SPACE SCOPES
China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

China's Fast Track To Circumlunar Mission

SPACE SCOPES
Europe's Fifth and Final Resupply Ship Launches to Station

Science and Spacesuit Work While ATV-5 Preps for Launch

Russian Cargo Craft Launches for 6-Hour Trek to ISS

ISS Crew Opens Cargo Ship Hatch, Preps for CubeSat Deployment

SPACE SCOPES
US Launches Two Surveillance Satellites From Cape Canaveral

United Launch Alliance Marks 85th Successful Launch

US aerospace firm outlines New Zealand-based space program

China to launch satellite for Venezuela

SPACE SCOPES
Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

Astronomers come up dry in search for water on exoplanets

Hubble Finds Three Surprisingly Dry Exoplanets

SPACE SCOPES
Printing the Metals of the Future

New characteristics of complex oxide surfaces revealed

Building the Foundation for Future Synthetic Biology Applications with BRICS

Collecting just the right data




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.