Subscribe free to our newsletters via your
. 24/7 Space News .

How massive stars sculpt a cosmic crib
by Staff Writers
Paris (ESA) May 14, 2012

This image of the Cygnus X complex, taken with ESA's Herschel Space Observatory at far-infrared wavelengths, shows how young, massive stars are carving an intricate network of bubbles, filaments and pillars in this very rich stellar nursery. At a distance of about 4500 light years from us, Cygnus X is home to a large number of young, massive stars. With their powerful winds and copious amounts of ionising radiation released into their surroundings, these massive stars are responsible of forging most of the structure that can be seen across the image.

Desktop avialable 1680 :: 1280 :: 1024. Original images reference: ESA/Herschel

ESA's Herschel Space Observatory has captured a new, stunning image of Cygnus X, one of the richest star-forming regions in our cosmic neighbourhood. The image reveals in unprecedented detail the intricate network of filaments, pillars and bubbles present in the region. These structures have been carved by the powerful effects of the many young, massive stars being born in this stellar nursery.

Between two of the brightest stars of the constellation Cygnus (the Swan) but hidden to human eyes and optical telescopes, lies an intricate network of glowing clouds where thousands of stars are being born. This region, known as the Cygnus X complex, is characterised by fierce, intense star formation activity resulting in an exceptionally abundant production of massive stars.

A new image of the Cygnus X complex, obtained with ESA's Herschel Space Observatory at far-infrared wavelengths, reveals the emission from gas, dust and forming stars in this region at unprecedented detail. The image combines data acquired with the PACS instrument at 70 micron (shown in blue) and 160 micron (shown in green) and with the SPIRE instrument at 250 micron (shown in red).

Located at a distance of about 4500 light years from us, Cygnus X is the richest stellar nursery in our cosmic neighbourhood and is home to a large number of young, massive stars. Although an even larger number of low-mass stars are forming throughout the region, it is the presence of so many massive stars, with their powerful winds and copious amounts of ionising radiation released into their surroundings, that forges most of the structure that can be seen across the image.

Astronomers investigate the various regions in the Cygnus X complex to understand how feedback from massive stars is influencing the ongoing star formation across the entire region, and the images collected with Herschel are adding new clues to these studies.

An OB association, or a loose stellar group containing a large number of young, massive stars of types O and B, is hosted in the complex, in the central-lower part of the image, to the lower-right of the diffuse blue glow. This association, known as Cygnus OB2, hosts thousands of stars, and although they are not visible in the Herschel image their remarkable effects on the nearby clouds stand out clearly.

An example is the diffuse blue glow visible in the central portion of the image: it is the result of powerful winds and radiation from stars in the OB association, which have partly cleared out and heated up the surrounding material, making it shine.

The intricate network of filaments and pillars in the right part of the image may be harbouring the formation of a new, rich OB association, thus showing how Cygnus OB2 might have looked in its infancy, about 3 million years ago. One of the most notable features in this portion of the image is the DR21 region, an extremely dense filamentary structure that bifurcates towards the right.

Very massive stars are forming along this filament, and astronomers are studying them in great detail to shed new light on the processes that lead to the birth of high-mass stars.

Several bubble-like structures are also visible in the right part of the image: these are being carved by nearby massive young stars. The radiation released by these stars ionises the gas in their surroundings, causing the bubbles to shine brightly at the shortest of the wavelengths probed by Herschel (hence the blue-white glow that characterises these bubbles in the image).

In the left part of the image, the structure of clouds is more diffuse, with one prominent pillar-like feature, named DR15, whose shape resembles the neck of a swan.

A highly symmetric bubble is visible, in blue, close to the edge of this pillar - likely a shell of material being ejected by the Luminous Blue Variable star G79.29+0.46, a supergiant star located at the centre of the shell but invisible at the wavelengths probed by Herschel.

Throughout the image, several clumps are visible as compact red objects: these are dense concentrations of matter that will evolve into the next generation of massive stars. Exploiting the extraordinary sensitivity of Herschel in this portion of the spectrum, astronomers have detected a large number of these seeds of future stars.

This rich set of data is a valuable addition to the body of observational material that is contributing to advancing our current understanding of how massive stars come to shape and influence the formation of lower-mass stars in their surroundings.


Related Links
Herschel Space Observatory
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

How Nature Shapes the Birth of Stars
Bonn, Germany (SPX) May 14, 2012
Using state of the art computer simulations, a team of astronomers from the University of Bonn in Germany have found the first evidence that the way in which stars form depends on their birth environment. The team, based at the University of Bonn in Germany, publish their results in the journal Monthly Notices of the Royal Astronomical Society. Stars are thought to form in interstellar spa ... read more

Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

Opportunity Rolling Again After Fifth Mars Winter

Mojave Desert Tests Prepare for NASA Mars Roving

Mars Opportunity Rover Is A Go For More Travel

WSU air-quality researcher to lead field studies in support of NASA Mars mission

ATK Announces Complete Liberty System to Provide Commercial Crew Access

NASA Conducts Tests on Orion Service Module

Boeing Completes Full Landing Test of Crew Space Transportation Spacecraft

How will the US biotechnology industry benefit from new patent laws?

Long March-2F rocket delivered to launch center

China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Middle School Students Send Commands to the International Space Station

Dancing Droplets Rock Out On Space Station

Space Station's Robotic Crew Member Designed to Look, Move and Work Like a Human

Expedition 30 Lands in Kazakhstan

EchoStar XVII comes to French Guiana for a dual-payload Arianespace flight in June with Ariane

SpaceX and Bigelow Aerospace Join Forces to Offer Crewed Missions to Private Space Stations

A Soyuz takes shape in French Guiana for the next dual Galileo satellite launch

SpaceX boss admits sleep elusive before ISS launch

Free-floating planets in the Milky Way outnumber stars by factors of thousands

Unseen planet revealed by its gravity

Ultra-cool companion helps reveal giant planets

NASA's Spitzer Sees the Light of Alien 'Super Earth'

VPT Adds 15 Amp Point of Load DC-DC Converter to Space Family of Power Conversion Products

SciTechTalk: Mourning the computer mouse?

TDRS-4 Mission Complete; Spacecraft Retired From Active Service

Pratt and Whitney Rocketdyne Propulsion Orbits Critical Communications Satellite for US Military

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement