Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
How climate change affects microbial life below the seafloor
by Staff Writers
Bremen, Germany (SPX) Oct 25, 2013


The international drilling vessel JOIDES Resolution. Image courtesy IODP.org.

Traces of past microbial life in sediments off the coast of Peru document how the microbial ecosystem under the seafloor has responded to climate change over hundreds of thousands of years. For more a decade scientists at the Max Planck Institute for Marine Microbiology and their colleagues at MARUM and the University of Aarhus have investigated microbial life from this habitat.

This "Deep Biosphere", reaching several hundred meters below the seafloor, is exclusively inhabited by microbes and is generally considered as stable. Nevertheless, only little is known about how this system developed over millennia and how this microbial life influences the cycling of carbon in the oceans.

In a new study appearing in the Proceedings of the National Academy of Sciences (PNAS). Sergio Contreras, a palaeoceanographer, and his Bremen colleagues use a careful examination of drill-cores from the continental shelf of Peru to actually show how surprisingly dynamic this deeply buried ecosystem can be.

Below the sea floor, consortia of two different domains of microorganisms (archaea and bacteria) tap the energy of methane, which they oxidize by using sulfate. This process is known as the anaerobic oxidation of methane (AOM) and has been intensively studied by Bremen researchers.

Methane, also produced by archaea, emerges from deeper layers of the sediment, while sulfate diffuses slowly from the water column into the sediment. Both reactants meet at the so-called methane oxidation front. Only at this front are concentrations of sulfate and methane high enough for the microbial turnover to take place, and here the AOM process leaves behind mineral and biological fossil signatures.

For example, archaeol, a constituent of the archaeal cell membrane, is an extremely stable molecule that is preserved over thousands to millions of years. Minerals such as barite (barium sulfate) and dolomite (magnesium calcium carbonate) also precipitate at this methane oxidation front due to microbial activity.

Migration of the methane oxidation front
In order to trace the migration of the methane oxidation front back over the last half million years, Contreras and his colleagues measured the barite, dolomite and archaeol content at high resolution in drill cores from the coast off Peru. These up to 200-meter-long cores from the Peruvian continental shelf were obtained during an expedition with the scientific drill ship JOIDES Resolution as part of the Ocean Drilling Program in 2002.

To their surprise, Contreras and his colleagues detected a layer that was strongly enriched in archaeol, barite and dolomite, located 20 meter above the present-day methane oxidation front. They estimated that this layer was formed during the last interglacial time period about 125000 years ago and that the methane front must have rapidly migrated downwards during the last glacial period.

"Our data demonstrate how fast the microbial communities respond to changes in the oceanographic conditions, at least on a geological time scale", explains the biogeochemist Tim Ferdelman.

Exploring the past with mathematical modeling
To reconstruct the rapid shifts in the depth of the methane front, Contreras and his colleagues used a mathematical model for simulating the deep microbial activity and its dependence on climate change. The simulations clearly show that the amount of organic detritus raining out from the highly productive Peruvian surface waters is the crucial factor determining the relative position of the methane front.

The amount of carbon deposited on the Peruvian shelf strongly depends on the global climate; thus the methane oxidation front moved upwards during warm periods due to intensified organic carbon deposition, and migrated downwards with the onset of cold, glacial periods due to low organic carbon deposition.

"We can incorporate these new findings into models for the development of past or future Deep Biospheres", concludes Bo Liu who developed the model for this study.

The geologist Patrick Meister highlights the implications of this finding: "The detected traces provide the key to the history of the sub-seafloor microbial activity and its dynamic interaction with climate and oceanography for of the past 100,000 years. If we look further back in time, such as over the past million years" speculates Meister, "we might find even more drastic changes of microbial activity in the deep biosphere".

.


Related Links
Max Planck Institute for Marine Microbiology, Bremen
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
A bad break for fake pearls
Zurich, Switzerland (SPX) Oct 22, 2013
For a long time, it was thought impossible to isolate a pearl's genetic material. Now, a Swiss research team has achieved this elusive goal. Scientists Joana Meyer, from the ETH Institute of Integrative Biology group headed by Prof. Bruce McDonald, and Laurent Cartier of the Swiss Gemmological Institute (SSEF), under the direction of Michael Krzemnicki, succeeded for the first time in extr ... read more


WATER WORLD
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

WATER WORLD
NASA to probe why Mars lost its atmosphere

Mars Crater May Actually Be Ancient Supervolcano

Scientists discover how the atmosphere of Mars turned to stone

Mars Rover Opportunity Heads Uphill

WATER WORLD
Incoming ISS Commander to Treat Crew to Sushi

NASA Partner SpaceX Completes Review of 2014 Commercial Crew Abort Test

Enough lying about

US firm offers 30 kilometer-high balloon ride

WATER WORLD
China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

Is China Challenging Space Security

NASA's China policy faces mounting pressure

WATER WORLD
European cargo freighter to undock from ISS

Cygnus cargo craft leaves international space station

Cygnus cargo craft readies to leave space station

Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

WATER WORLD
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

WATER WORLD
Carbon Worlds May be Waterless

Planets rich in carbon could be poor in water, reducing life chances

New planet found around distant star could be record-breaker

Count of discovered exoplanets passes the 1,000 mark

WATER WORLD
Zoomable Holograms Pave the Way for Versatile, Portable Projectors

Copper Shock: An Atomic-scale Stress Test

Study Finds Natural Compound Can Be Used for 3-D Printing of Medical Implants

NIST measures laser power with portable scale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement