Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
How Round Is The Sun
by Dr. Tony Phillips
Huntsville AL (SPX) Oct 03, 2008


"Cantaloupe ridges" on the sun. The glowing white magnetic network is what gives the sun its extra oblateness during times of high solar activity. Los Angeles astronomer Gary Palmer took the picture in July 29, 2005, using a violet calcium-K solar filter.

Scientists using NASA's RHESSI spacecraft have measured the roundness of the sun with unprecedented precision, and they find that it is not a perfect sphere. During years of high solar activity the sun develops a thin "cantaloupe skin" that significantly increases its apparent oblateness.

"The sun is the biggest and smoothest natural object in the solar system, perfect at the 0.001% level because of its extremely strong gravity," says study co-author Hugh Hudson of UC Berkeley. "Measuring its exact shape is no easy task."

The team did it by analyzing data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI for short, an x-ray/gamma-ray space telescope launched in 2002 on a mission to study solar flares. Although RHESSI was never intended to measure the roundness of the sun, it has turned out ideal for the purpose. RHESSI observes the solar disk through a narrow slit and spins at 15 rpm.

The spacecraft's rapid rotation and high data sampling rate (necessary to catch fast solar flares) make it possible for investigators to trace the shape of the sun with systematic errors much less than any previous study. Their technique is particularly sensitive to small differences in polar vs. equatorial diameter or "oblateness."

"We have found that the surface of the sun has rough structure: bright ridges arranged in a network pattern, as on the surface of a cantaloupe but much more subtle," describes Hudson. During active phases of the solar cycle, these ridges emerge around the sun's equator, brightening and fattening the "stellar waist."

At the time of RHESSI's measurements in 2004, ridges increased the sun's apparent equatorial radius by an angle of 10.77 +- 0.44 milli-arcseconds, or about the same as the width of a human hair viewed one mile away.

"That may sound like a very small angle, but it is in fact significant," says Alexei Pevtsov, RHESSI Program Scientist at NASA Headquarters. Tiny departures from perfect roundness can, for example, affect the sun's gravitational pull on Mercury and skew tests of Einstein's theory of relativity that depend on careful measurements of the inner planet's orbit.

Small bulges are also telltale signs of hidden motions inside the sun. For instance, if the sun had a rapidly rotating core left over from early stages of star formation, and if that core were tilted with respect to its outer layers, the result would be surface bulging. "RHESSI's precision measurements place severe constraints on any such models."

The "cantaloupe ridges" are magnetic in nature. They outline giant, bubbling convection cells on the surface of the sun called "supergranules." Supergranules are like bubbles in a pot of boiling water amplified to the scale of a star; on the sun they measure some 30,000 km across (twice as wide as Earth) and are made of seething hot magnetized plasma.

Magnetic fields at the center of these bubbles are swept out to the edge where they form ridges of magnetism. The ridges are most prominent during years around Solar Max when the sun's inner dynamo "revs up" to produce the strongest magnetic fields.

Solar physicists have known about supergranules and the magnetic network they produce for many years, but only now has RHESSI revealed their unexpected connection to the sun's oblateness.

"When we subtract the effect of the magnetic network, we get a 'true' measure of the sun's shape resulting from gravitational forces and motions alone," says Hudson. "The corrected oblateness of the non-magnetic sun is 8.01 +- 0.14 milli-arcseconds, near the value expected from simple rotation."

"These results have far ranging implications for solar physics and theories of gravity," comments solar physicist David Hathaway of the NASA Marshall Space Flight Center.

"They indicate that the core of the sun cannot be rotating much more rapidly than the surface, and that the sun's oblateness is too small to change the orbit of Mercury outside the bounds of Einstein's General Theory of Relativity."

Further analysis of RHESSI oblateness data could also help researchers detect a long-sought type of seismic wave echoing through the interior of the sun: gravitational oscillations or "g-modes." The ability to monitor g-modes would open a new frontier in solar physics-the study of the sun's internal core.

"All of this," marvels Hathaway, "comes from clever use of data from a satellite designed for something entirely different. Congratulations to the RHESSI team!"

.


Related Links
Science@NASA
RHESSI home page
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Spotless Sun: Blankest Year Of The Space Age
Huntsville AL (SPX) Oct 03, 2008
Astronomers who count sunspots have announced that 2008 is now the "blankest year" of the Space Age. As of Sept. 27, 2008, the sun had been blank, i.e., had no visible sunspots, on 200 days of the year. To find a year with more blank suns, you have to go back to 1954, three years before the launch of Sputnik, when the sun was blank 241 times. "Sunspot counts are at a 50-year low," ... read more


SOLAR SCIENCE
NASA's Dirty Secret: Moon Dust

NASA Challenges Students To Design Tools For Moon Rovers

A Lunar Dust Up Could Spell Trouble

Company Launches Moon Dust Pens Website

SOLAR SCIENCE
Nicaraguan Volcano Provides Insight Into Early Mars

Mars Lander Sees Falling Snow, Soil Data Suggest Liquid Past

MRO Reveals Rock Fracture Plumbing On Mars

The Ancient Rains Of Mars

SOLAR SCIENCE
Magnetic Hunger Could Drive Space Travelers Insane

Successful Re-Entry Marks Bright Future For ATV

Astronaut vs. Earthlings chess game begins

Commercial space ventures ready for lift-off

SOLAR SCIENCE
Emergency Rescue Vessels For Shenzhou-7 Spaceship Return

China hails spacewalk 'heroes' and sets eyes on moon

China plans manned trip to moon after successful mission

China astronauts return as heroes after historic spacewalk

SOLAR SCIENCE
Boeing Receives ISS Contract Extension

Europe's "space truck" heads for Pacific breakup

Russia's Space Agency Confirms 18th ISS Expedition

The US Has No Option But To Use Russia's Soyuz Craft

SOLAR SCIENCE
GOCE Team Gearing Up For New Launch Date

Russia Launches Thai Satellite On Converted Missile

Sea Launch Successfully Delivers Galaxy 19 To Orbit

Sea Launch Countdown Underway For The Galaxy 19 Mission

SOLAR SCIENCE
Worlds In Collision

US astronomers discover inter-planetary collision

NASA's Kepler Spacecraft Baked And Ready For More Tests

TNO Star Separators Help ESO With Detection Of Exoplanets

SOLAR SCIENCE
High-School Team Tracks Spacecraft Breakup

Actel Adds DSP Capabilities To Industry-Leading RTAX Space FPGAs

New Research Shows Why Metal Alloys Degrade

Oracle, HP unveil computer to cope with digital explosion




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement