Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




ENERGY TECH
Hot lithium vapors shield fusion facility walls
by Staff Writers
Washington DC (SPX) Nov 15, 2013


This is an image of lithium emission during experiments conducted on the Magnum-PSI device. Plasma streams toward the target from the left and impinges the sample indicated by the yellow dashed line. The lithium ablates into the plasma stream and forms a cloud in front of the target. Credit: M. Jaworski.

Recent experiments provide the first assessment of the toughness of a novel lithium coating in the face of intense bombardment by very hot plasma in the divertor region of fusion devices. The results show that this coating can shield the divertor region, which vents plasma exhaust, for 10 times longer than previously expected.

If confirmed by further research, this type of lithium treatment could alleviate widespread concerns that liquid-lithium plasma-facing components will rapidly overwhelm the core of the plasma with impurities and abort fusion reactions.

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the Dutch Institute for Fundamental Energy Research (DIFFER) conditioned the target samples with lithium and, in the course of experiments, raised the surface temperature above 900 degrees Celsius.

At such high temperatures the lithium rapidly ablates, or wears away, from the target through a combination of evaporation and other erosion processes. The vaporized lithium is expected to serve as a shield that will intercept and mitigate the intense plasma flux before it can impinge upon the rest of the wall.

These experiments demonstrated that such a vapor cloud could be produced and was stable over a wide temperature range. The research found that the regime persisted for three-to-four seconds under the intense plasma bombardment. This indicated that nearly 100 percent of any eroded wall material had been confined to the surface of the sample.

Simple estimates had suggested that coatings without such high confinement at the target could last less than half a second under the intense conditions and would fail to keep impurities from drifting into other parts of the machine.

These initial experiments, performed on the Magnum-PSI linear plasma device at the Dutch center, were done in support of a research and development program planned for the National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL. The Magnum-PSI plasma served as a proxy for the hot plasma exhaust that the divertor region will channel away in the NSTX-U and other current and future fusion facilities. The researchers used a lithium evaporator developed at PPPL to test the novel vapor-shielded regime on different target materials.

This research indicates that modest coatings of lithium on metallic substrates such as tungsten can be sufficient for initial experiments of the regime in a tokamak such as NSTX-U. Demonstration of the vapor-shielded regime in the NSTX-U would provide proof-of-principle for using liquid lithium as a divertor target material in a reactorrelevant device.

Erosion and re-deposition of lithium coatings on graphite and TZM molybdenum in support of NSTX-U divertor operations (T. Abrams); Session JO4: NSTX-U and Pegasus

.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Plasma experiment demonstrates admirable self-control
Washington DC (SPX) Nov 15, 2013
A team of Chinese and American scientists has learned how to maintain high fusion performance under steady conditions by exploiting a characteristic of the plasma itself: the plasma self-generates much of the electrical current needed for plasma containment in a tokamak fusion reactor. This self-generated, or "bootstrap," current has significant implications for the cost-effectiveness of fusion ... read more


ENERGY TECH
NASA's GRAIL Mission Puts a New Face on the Moon

Moon mission yields clues to face of 'man in the moon'

Shanghai-built lunar rover set for lunar landing

Crowdfunded Lunar Spacecraft Reaches Funding Milestone

ENERGY TECH
Martian moon samples will have bits of Mars

NASA release 'tour' of ancient, wet Mars as YouTube video

Curiosity Out of Safe Mode

MAVEN Aims To Answer Where Did the Water on Mars Go

ENERGY TECH
NASA says new deep space vehicle on time for 2014 test

NASA's Orion Sees Flawless Fairing Separation in Second Test

Lockheed Martin Team Tests Orion's Protective Panels

UCF Lands NASA-Funded Center, Linchpin for Future Space Missions

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

ENERGY TECH
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ENERGY TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

ENERGY TECH
Protection Of Materials And Structures From Space Environment at ICPMSE 11

Snap to attention: Polymers that react and move to light

Altering surface textures in 'counterintuitive manner' may lead to cooling efficiency gains

Methane-munching microorganisms meddle with metals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement