Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Holistic Cell Design Leads to High-Performance, Long Cycle Lithium-Sulfur Battery
by Staff Writers
Berkeley CA (SPX) Nov 28, 2013


A schematic of a lithium-sulfur battery with SEM photo of silicon-graphene oxide material.

Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery's capacity. This is longest cycle life reported so far for any lithium-sulfur battery.

Demand for high-performance batteries for electric and hybrid electric vehicles capable of matching the range and power of the combustion engine encourages scientists to develop new battery chemistries that could deliver more power and energy than lithium-ion batteries, currently the best performing battery chemistry in the marketplace.

For electric vehicles to have a 300-mile range, the battery should provide a cell-level specific energy of 350 to 400 Watt-hours/kilogram (Wh/kg). This would require almost double the specific energy (about 200 Wh/kg) of current lithium-ion batteries. The batteries would also need to have at least 1,000, and preferably 1,500 charge-discharge cycles without showing a noticeable power or energy storage capacity loss.

"Our cells may provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles." says Elton Cairns, of the Environmental Energy Technologies Division (EETD)

The results were reported in the journal Nano Letters, in a paper authored by Min-Kyu Song (Molecular Foundry, Berkeley Lab), Yuegang Zhang (Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences) and Cairns (Environmental Energy Technologies Division, Berkeley Lab). The research was funded by the U.S. Department of Energy's Office of Science, Basic Energy Sciences, and a University of California Proof of Concept Award.

Benefits of lithium sulfur, and challenges
"The lithium-sulfur battery chemistry has attracted attention because it has a much higher theoretical specific energy than lithium-ion batteries do," says Cairns.

"Lithium-sulfur batteries would also be desirable because sulfur is nontoxic, safe and inexpensive," he adds. Li/S batteries would be cheaper than current Li-ion batteries, and they would be less prone to safety problems that have plagued Li-ion batteries, such as overheating and catching fire.

Development of the lithium-sulfur battery also has its challenges. During discharge lithium polysulfides tend to dissolve from the cathode in the electrolytes and react with the lithium anode forming a barrier layer of Li2S. This chemical degradation is one reason why the cell capacity begins to fade after just a few cycles.

Another problem with Li/S batteries is that the conversion reaction from sulfur to Li2S and back causes the volume of the sulfur electrode to swell and contract up to 76 percent during cell operation, which leads to mechanical degradation of the electrodes. As the sulfur electrode expands and shrinks during cycling, the sulfur particles can become electrically isolated from the current collector of the electrode.

Holistic cell design addresses chemical and mechanical degradation
The prototype cell designed by the research team uses several electrochemical technologies to address this array of problems. The cathode is composed of sulfur-graphene oxide (S-GO), a material developed by the team that can accommodate the volume change of the electrode active material as sulfur is converted to Li2S on discharge, and back to elemental sulfur on recharge.

To further reduce mechanical degradation from the volume change during operation, the team used an elastomeric binder. By combining elastomeric styrene butadiene rubber (SBR) binder with a thickening agent, the cycle life and power density of the battery cell increased substantially over batteries using conventional binders.

To address the problem of polysulfide dissolution and the chemical degradation the research team applied a coating of cetyltrimethyl ammonium bromide (CTAB) surfactant that is also used in drug delivery systems, dyes, and other chemical processes. CTAB coating on the sulfur electrode reduces the ability of the electrolyte to penetrate and dissolve the electrode material.

Furthermore, the team developed a novel ionic liquid based electrolyte. The new electrolyte inhibits polysulfides dissolution and helps the battery operate at a high rate, increasing the speed at which the battery can be charged up, and the power it can deliver during discharge. The ionic liquid-based electrolyte also significantly improves the safety of the Li-S battery, as ionic liquids are non-volatile and non-flammable.

The battery initially showed an estimated cell-specific energy of more than 500 Wh/kg and it maintained it at >300 Wh/kg after 1,000 cycles-much higher than that of currently available lithium-ion cells, which currently average about 200 Wh/kg.

"It's the unique combination of these elements in the cell chemistry and design that has led to a lithium-sulfur cell whose performance has never been achieved in the laboratory before-long life, high rate capability, and high cell-level specific energy," says Cairns.

The team is now seeking support for the continuing development of the Li/S cell, including higher sulfur utilization, operation under extreme conditions, and scale-up. Partnerships with industry are being sought.

The next steps in the development are to further increase the cell energy density, improve cell performance under extreme conditions, and scale up to larger cells.

"A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance," in Nano Letters, by Min-Kyu Song (Molecular Foundry, Berkeley Lab), Yuegang Zhang (Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences) and Cairns (Environmental Energy Technologies Division, Berkeley Lab).

This research was funded by the U.S. Department of Energy's Office of Science and a University of California's Proof of Concept Award.

.


Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Pressure Cooking to Improve Electric Car Batteries
Riverside CA (SPX) Nov 19, 2013
Batteries that power electric cars have problems. They take a long time to charge. The charge doesn't hold long enough to drive long distances. They don't allow drivers to quickly accelerate. They are big and bulky. Researchers at the University of California, Riverside's Bourns College of Engineering have redesigned the component materials of the battery in an environmentally friendly way ... read more


ENERGY TECH
Spotlight on China's Moon Rover

We're Going to the Moon!

NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

ENERGY TECH
Curiosity Resumes Science After Analysis of Voltage Issue

Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

ENERGY TECH
Orion Flight Test Hardware Thrives Under Pressure

International Space Station to enjoy Thanksgiving dinner

NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

ENERGY TECH
China names moon rover "Yutu"

China launches experimental satellite

China to send 'jade rabbit' to Moon: state media

"Gravity" director wants China to take him into space

ENERGY TECH
ISS Benefits for Humanity in Plain Sight in New Video Feature

Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

ENERGY TECH
Second rocket launch site depends on satellite size, cost-benefit

Private US launch of satellite delayed

Stepping up Vega launcher production

Czech and XCOR Sign Payload Integrator Agreement for Suborbital Flights

ENERGY TECH
Search for habitable planets should be more conservative

NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

ENERGY TECH
Crippled space telescope given second life, new mission

Scientists create perfect solution to iron out kinks in surfaces

What might recyclable satellites look like?

Overcoming Brittleness: New Insights into Bulk Metallic Glass




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement