Subscribe free to our newsletters via your
. 24/7 Space News .

Heavy Metal Stars Produce Earth-Like Planets
by Staff Writers
Washington DC (SPX) Sep 30, 2011

Kepler 10b was the first rocky planet found by the spacecraft. With a temperature of over 2,500 degrees Fahrenheit, the planet is unlikely to have life as we know it. Credit: NASA/Kepler Mission/Dana Berry.

Based on data from NASA's Kepler space telescope, astronomers hunting for terrestrial planets should focus on smaller stars with an abundance of metals. New research reveals that, like their giant cousins, rocky planets are more likely to be found orbiting high metallicity stars. Furthermore, these planets are more plentiful around low mass stars. This could have important implications for the search for life outside of Earth.

Kevin Schlaufman and Gregory Laughlin, both of the University of California at Santa Cruz, studied the 997 stars with candidate planets thought to be in orbit around them, as reported by Kepler's science team last February. Schlaufman and Laughlin confirmed that both large and small planets were more likely to be found around stars with higher metallicities.

For astronomers, elements other than hydrogen and helium are considered "metals." Stars with high metallicities contain a significant amount of other elements. These metals were first formed when early stars, composed of the two basic gases hydrogen and helium, died in a violent supernova, spewing their contents into space.

Sally Dodson-Robinson, of the University of Texas at Austin, noted that it wasn't surprising to find that terrestrial planets tend to form around more metallic stars.

"Planets formed from the same raw materials as their star does," she explained.

Stars form from the gravitational compression of gas and dust, and the spinning disk of leftover material that orbits the new star is where planets are made.

Before Kepler, enough gas giant planets had been located for astronomers to say with certainty that these behemoths were linked to metal-rich stars. But it was not known if this applied to rocky planets as well, since so few had been found in the galaxy.

That changed in February, when NASA announced the discovery by Kepler of 68 Earth-sized candidates and 288 super-Earths. This planetary goldmine provided a wealth of systems to study, and enough stars to make firmer correlations about the types of stars that less massive planets orbit.

Because all types of planets are more likely to exist around high-metallicity stars, Schlaufman said this gives a rough time frame for when planets first began to appear in the galaxy. After all, they would have to wait for the first generation of stars to speed through their life cycle and explode, providing the metals required for planetary formation. Each cycle of stars would have created more metals, making it easier for planets to coalesce.

The process would have taken a few billion years. This provides constraints on finding advanced civilizations, since planets - and thus life - would not have formed in the early years of the universe.

Schlaufman added that a stronger case could be made as more extrasolar planets are found in the future, helping astronomers better understand the links between planets and their stars.

But in their study, Schlaufman and Laughlin examined more than the metallicity of stars. They also determined that terrestrial planets were more likely to be found around low mass stars.

The reason is simple: gas giants require a lot of mass to form.

"The total mass in the disk is proportional to how massive the star is," Schlaufman said.

Larger disks are more likely to yield massive planets, while smaller stars and their disks seem to result in less massive, rockier satellites.

Schlaufman was quick to note the possibilities for life. Stars more massive than the Sun last only a few billion years, while their lower-mass siblings have much longer lifetimes. This gives a planet more time to develop life - and for that life to evolve into an advanced civilization - before the death of its sun.

The odds of finding life may increase with the more planets that are discovered, especially rocky planets like the Earth. Kepler's confirmation that such planets are more likely to form around high-metal stars should help in this search. Schlaufman points out that Kepler has seven million stars in its field of view, but can only examine about a 160,000 at a time. Although this introduces a bias in the search for new planets, he praises the results Kepler is producing.

Dodson-Robinson agrees.

"If your goal is to find planets, it means you want to look at the most metal-rich stars."


Related Links
Kepler space telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Doubts Over Fomalhaut b
Moffett Field CA (SPX) Sep 30, 2011
As astronomers continue to rack up exoplanet discoveries by the dozen, the precise status of just one may not seem like much to fret over. But Fomalhaut b is different. Unveiled in 2008, the tiny dot spotted circling Fomalhaut, a star just 7.7 parsecs from our own Solar System, was billed as the first exoplanet to be directly imaged at optical wavelengths. Now Fomalhaut b's identity is bei ... read more

NASA Partners Uncover New Hypothesis On Crater Debris

China to launch moon-landing probe around 2013

United Launch Alliance Launches GRAIL Spacecrafts To Moon

NASA launches twin spacecraft to study Moon's core

Mars Express finds water supersaturation in the Martian atmosphere

SpaceX says 'reusable rocket' could help colonize Mars

Help NASA Find Life On Mars With MAPPER

Drilling into Arctic Ice

Iran postpones monkey's ride into space

'Invisible key' invented by Taiwan scientists

Obama under fire over space plans

Not Because It Is Easy

Snafu as China space launch set to US patriotic song

Civilians given chance to reach for the stars

Tiangong-1 Forms Cornerstone Of China's Space Odyssey

"Heavenly Palace" China's dream home in space

Commercial space deliveries 'within months': NASA

Private US capsule not to dock with ISS

Crew safely returns to Earth after crash

Russia postpones next manned launch to ISS

Sea Launch resumes operations after 2-year break

Ariane 5 marks fifth launch for 2011

Countdown to first Soyuz launch at Kourou under way

Ariane rocket launches satellites after strike delay

Heavy Metal Stars Produce Earth-Like Planets

Doubts Over Fomalhaut b

Earth's Trapped Gas Fed the Early Atmosphere

From the Comfort of Home, Web Users May Have Found New Planets

Apple chief Cook to debut hot new iPhone

China cracks down on fake iPhones: report

RIM says committed to PlayBook amid price cuts

Orbiting ORS-1 Satellite System Operating Successfully

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement