Subscribe free to our newsletters via your
. 24/7 Space News .

Has Graphene Been Detected in Space
by Staff Writers
Tucson AZ (SPX) Aug 11, 2011

Artist's impression of the graphenes (C24) and fullerenes found in a planetary nebula. The detection of graphenes and fullerenes around old stars as common as our Sun suggests that these molecules and other allotropic forms of carbon may be widespread in space. Credit: IAC; original image of the Helix Nebula: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI and T.A. Rector, NRAO.

A team of astronomers, using the Spitzer Space Telescope, have reported the first extragalactic detection of the C70 fullerene molecule, and the possible detection of planar C24 ("a piece of graphene") in space.

Letizia Stanghellini and Richard Shaw, members of the team at the National Optical Astronomy Observatory in Tucson, Arizona, describe how collisional shocks powered by the winds from old stars in planetary nebulae could be responsible for the formation of fullerenes (C60 and C70) and graphene (planar C24).

The team is led by Domingo Anibal Garcia-Hernandez of the Instituto de Astrofisica de Canarias in Spain and includes international astronomers and biochemists.

Planetary nebulae originate from stars similar to our Sun that have reached the end of their lives and are shedding shells of gas into space. In this case, the planetary nebulae are located in the Magellanic Clouds, two satellite galaxies to our own Milky Way, that are best seen from the Southern Hemisphere. At the distance of the Magellanic Clouds, planetary nebulae appear as small fuzzy blobs.

However, unlike planetaries in our own Milky Way Galaxy whose distances are very uncertain, the distance to planetaries in the Magellanic Clouds can be determined to better than 5%. With such accurate distances, the research team determined the true luminosity of the stars and confirmed that the objects are indeed planetary nebulae and not some other object in the astrophysical zoo.

Fullerenes, or Buckyballs, are known from laboratory work on Earth and have many interesting and important properties. Fullerenes consist of carbon atoms arranged in a three dimensional sphere similar to the geodesic domes popularized by Buckminster Fuller.

The C70 fullerene can be compared with a rugby ball, while C60 is compared to a soccer ball. Both of these molecules have been detected in the sample. Graphene (planar C24) is a flat sheet of carbon atoms, one atom thick, that has extraordinary strength, conductivity, elasticity and thinness.

Cited as the thinnest substance known, graphene was first synthesized in the lab in 2004 by Geim and Novoselov for which they received the 2010 Nobel Prize in physics. "If confirmed with laboratory spectroscopy - something that is almost impossible with the present techniques - this would be the first detection of graphene in space," said team member Garcia-Hernandez.

The team has proposed that fullerenes and graphene are formed from the shock-induced (i.e., grain-grain collisions) destruction of hydrogenated amorphous carbon grains (HACs). Such collisions are expected in the stellar winds emanating from planetary nebulae, and this team sees evidence for strong stellar winds in the ultraviolet spectra of these stars.

"What is particularly surprising is that the existence of these molecules does not depend on the stellar temperature, but on the strength of the wind shocks," says Stanghellini.

The Small Magellanic Cloud is particularly poor in metals (any element besides hydrogen and helium, in astronomers' parlance), but this sort of environment favors the evolution of carbon-rich planetary nebulae, which turns out to be a favorable place for complex carbon molecules.

The challenge has been to extract the evidence for graphene (planar C24) from Spitzer data. "The Spitzer Space Telescope has been amazingly important for studying complex organic molecules in stellar environments," says Stanghellini. "We are now at the stage of not only detecting fullerenes and other molecules, but starting to understand how they form and evolve in stars." Shaw adds,

"We are planning ground-based follow up through the NOAO system of telescopes. We hope to find other molecules in planetary nebulae where fullerene has been detected to test some physical processes that might help us understand the biochemistry of life."

The accompanying image includes an artist's conception of these molecules superimposed on the well known Helix Nebula. The smaller image shows one of the objects from this study in which fullerene has been detected in the Large Magellanic Cloud (SMP 48, from the catalog by Sanduleak, MacConnell and Philip) The name "planetary nebula" was applied to these star systems because their shell of surrounding gas made them appear like the disks of Jupiter, Saturn and Uranus as observed in 18th century telescopes. The reason for this name is obvious from the modern image.

These results are presented in a paper published in the Astrophysical Journal Letters, Volume 737, Issue 2, article id. L30 (2011). The team includes D. A. Garcia-Hernandez, S. Iglesias-Groth, J. A. Acosta-Pulido, A. Manchado, P. Garcia-Lario, L. Stanghellini, E. Villaver, R. A. Shaw and F. Cataldo.


Related Links
National Optical Astronomy Observatory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Pioneers get close-up view of miracle material graphene
Paris (AFP) July 24, 2011
Physicists who won last year's Nobel Prize for isolating graphene, the world's thinnest material, said Sunday they had devised ways of studying the novel substance at the fundamental level of the electron. In a study published in the journal Nature Physics, Russian-born physicists Andre Geim and Konstantin Novoselov said they had detailed interactions between electrons on a sheet of graphene ... read more

The Lunar Farside And The Ancient Big Splat

"Big Splat" May Explain The Moon's Mountainous Far Side

LADEE Completes Mission Critical Design Review

Moon's mountains made by slo-mo crash: study

No Convenience Stores Between Earth and Mars... Yet

Opportunity For A Captain Cook At Endeavour Crater

Opportunity On Final Rove To Endeavour Crater

Nearing First Landfall of Large Crater

Russia space chief regrets focus on manned missions

Boeing Selects Atlas V Rocket for Initial Commercial Crew Launches

NASA funds 30 new space research projects

Welsh tech firm starting U.S. company

Toys for Tiangong

Why Tiangong is not a Station Hub

China to launch experimental satellite in coming days

Spotlight Time for Tiangong

Crew Stows Spacesuits, Completes Robotics Checkout

The Orbital Perspective of Astronaut Ron Garan

Voyage to Vaccine Discovery Continues with Space Station Salmonella Study

New uses for Space Station

NASA selects Virgin Galactic for Suborbital Flights

Arabsat-5C is welcomed in French Guiana for Arianespace's next Ariane 5 launch

SES-2 Satellite Launch Preparations Kick off in Kourou

Arianespace blasts another pair of satellites into orbit

Strange planet is blacker than coal

Exoplanet Aurora Makes For An Out-of-this-World Sight

Distant planet aurorae modeled

Exoplanet Aurora: An Out-of-this-World Sight

Samsung, Apple battle goes to Dutch court

No charges for iPhone 4 prototype bloggers

Exotic quantum crystal discovered

Samsung appeals Europe tablet sale ban

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement