Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




BLUE SKY
Greenland snowpack shows Carbon monoxide levels drop since 1950s
by Staff Writers
Rochester NY (SPX) Sep 24, 2013


Carbon monoxide readily reacts with hydroxyl molecules (OH), thereby reducing the levels of OH in the atmosphere. The problem is that OH helps to reduce the amount of important atmospheric greenhouse gases -- such as methane. This means that high concentrations of CO indirectly contribute to global warming.

A first-ever study of air trapped in the deep snowpack of Greenland shows that atmospheric levels of carbon monoxide (CO) in the 1950s were actually slightly higher than what we have today. This is a surprise because current computer models predict much higher CO concentrations over Greenland today than in 1950. Now it appears the opposite is in fact true.

In a paper recently published in the journal Atmospheric Chemistry and Physics, Vasilii Petrenko, an assistant professor of earth and environmental sciences, concluded that CO levels rose slightly from 1950 until the 1970s, then declined strongly to present-day values. This finding contradicts computer models that had calculated a 40 percent overall increase in CO levels over the same period.

"The CO decline coincides with improvements in combustion technology, in particular the introduction of catalytic converters in automobiles," said Petrenko. "CO emissions were declining even as fossil fuel use was increasing."

Carbon monoxide, a byproduct of combustion that can be deadly in high concentrations, exists in the atmosphere at very low levels. While not a greenhouse gas like carbon dioxide, it plays an important role in atmospheric chemistry and an indirect role in global warming.

Petrenko and his team began their research project by extracting air from the snowpack at various depths, with samples taken from deeper in the snowpack corresponding to older time frames. After analyzing the samples, they created a CO history for the Arctic over the last 60 years, which shows that levels have been declining since the 1970s, despite a global increase in the number of vehicles being driven.

"It seems that no one thought to study carbon monoxide in the Greenland snowpack before our work," said Petrenko. "Also, the difficulty of taking the samples and making measurements may have discouraged some researchers."

Carbon monoxide readily reacts with hydroxyl molecules (OH), thereby reducing the levels of OH in the atmosphere. The problem is that OH helps to reduce the amount of important atmospheric greenhouse gases -- such as methane. This means that high concentrations of CO indirectly contribute to global warming.

Petrenko said it's possible that improvements in combustion technology may have had an even stronger impact than is immediately apparent from his research data. He points out that burning firewood -- a predominant cooking fuel in south Asia -- is a major source of carbon monoxide. Improvements in combustion technology may have masked an increase in CO from cooking -- brought on by a rise in that region's population.

"In order for computer models to get things right, it's important to have accurate historical records," said Petrenko. "Until now, we haven't had enough reliable data on carbon monoxide concentrations. This work helps to fill that gap."

Petrenko hopes to get the necessary funding to take readings from deeper in the Greenland ice in order to extend the record of CO levels to before the Industrial Revolution.

.


Related Links
University of Rochester
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BLUE SKY
Lawrence Livermore study finds human activity affects vertical structure of atmospheric temperature
Livermore CA (SPX) Sep 25, 2013
Human influences have directly impacted the latitude/altitude pattern of atmospheric temperature. That is the conclusion of a new report by scientists from Lawrence Livermore National Laboratory and six other scientific institutions. The research compares multiple satellite records of atmospheric temperature change with results from a large, multi-model archive of simulations. "Human activ ... read more


BLUE SKY
Watch Out for the Harvest Moon

Chang'e-3 lunar probe sent to launch site

Sixteen Tons of Moondust

Scientists say water on moon may have originated on Earth

BLUE SKY
Communications Tests Go the Distance for MAVEN

Curiosity Rover Detects No Methane On Mars

Robotic Arm Goes to Work on Rock Target

India unveils Mars mission spacecraft

BLUE SKY
Iran to send second monkey into space

Voyager's departure from the heliosphere

NASA study is enough to make a person want to stay in bed

Voyager 1 spacecraft reaches interstellar space

BLUE SKY
China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

China to launch lunar lander by end of year: media

BLUE SKY
Cygnus arrival at ISS delayed by at least 2 days: NASA

ISS Orbit to Be Raised Ahead of Crew Arrival

ISS Releases a White Stork and Awaits a Swan

Three astronauts back on Earth from ISS: mission control

BLUE SKY
Problems with Proton booster fixed

Decontamination continues at Baikonur after Proton abortive launc

Russia launches three communication satellites

Arianespace remains the global launch services leader

BLUE SKY
ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

BLUE SKY
New Model Should Expedite Development of Temperature-Stable Nano-Alloys

Balkans gold rush prompts pollution fears

Environmentally friendly cement is stronger than ordinary cement

X-ray science taps bug biology to design better materials and reduce pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement