Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Graphene plasmons go ballistic
by Staff Writers
Barcelona, Spain (SPX) Jan 13, 2015


This image shows simulation and observations of propagating plasmons in boron nitride heterostructure. Image courtesy ICFO.

Squeezing light into tiny circuits and controlling its flow electrically is a holy grail that has become a realistic scenario thanks to the discovery of graphene. This tantalizing achievement is realized by exploiting so-called plasmons, in which electrons and light move together as one coherent wave.

Plasmons guided by graphene -a two-dimensional sheet of carbon atoms - are remarkable as they can be confined to length scales of nanometers, up to two hundred times below the wavelength of light. An important hurdle until now has been the rapid loss of energy that these plasmons experience, limiting the range over which they could travel.

This problem has now been solved, as shown by researchers from ICFO (Barcelona), in a collaboration with CIC nanoGUNE (San Sebastian), and CNR/Scuola Normale Superiore (Pisa) ,all members of the EU Graphene Flagship, and Columbia University (New York).

Since the discovery of graphene, many other two-dimensional materials have been isolated in the laboratory. One example is boron nitride, a very good insulator. A combination of these two unique two-dimensional materials has provided the solution to the quest for controlling light in tiny circuits and suppression of losses.

When graphene is encapsulated in boron nitride, electrons can move ballistically for long distances without scattering, even at room temperature. This research now shows that the graphene/boron nitride material system is also an excellent host for extremely strongly confined light and suppression of plasmon losses.

ICFO Prof Frank Koppens comments that "it is remarkable that we make light move more than 150 times slower than the speed of light, and at lengthscales more than 150 times smaller than the wavelength of light. In combination with the all-electrical capability to control nanoscale optical circuits, one can envision very exciting opportunities for applications."

The research, carried out by PhD students Achim Woessner (ICFO) and Yuando Gao (Columbia) and postdoctoral fellow Mark Lundeberg (ICFO), is just the beginning of a series of discoveries on nano-optoelectronic properties of new heterostructures based on combining different kinds of two-dimensional materials.

The material heterostructure was first discovered by the researchers at Columbia University. Prof. James Hone comments: "Boron nitride has proven to be the ideal 'partner' for graphene, and this amazing combination of materials continues to surprise us with its outstanding performance in many areas".

Prof. Rainer Hillenbrand from CIC nanoGUNE comments: "Now we can squeeze light and at the same time make it propagate over significant distances through nanoscale materials. In the future, low-loss graphene plasmons could make signal processing and computing much faster, and optical sensing more efficient."

The research team also performed theoretical studies. Marco Polini, from CNR/Scuola Normale Superiore (Pisa) and the IIT Graphene Labs (Genova), laid down a theory and performed calculations together with his collaborators.

He explains that "according to theory, the interactions between light, electrons and the material system are now very well understood, even at a fully microscopic level. It is very rare to find a material that is so clean and in which this level of understanding is possible".

These findings pave the way for extremely miniaturized optical circuits and devices that could be useful for optical and/or biological sensing, information processing or data communications.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ICFO-The Institute of Photonic Sciences
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Cheap asphalt provides 'green' carbon capture
Houston TX (SPX) Jan 08, 2015
The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice University scientists. The Rice laboratory of chemist James Tour followed up on last year's discovery of a "green" carbon capture material for wellhead sequestration with the news that an even better compound could be made cheaply in a few steps from ... read more


CARBON WORLDS
Service module of China's lunar orbiter enters 127-minute orbit

Service Module of Chinese Probe Enters Lunar Orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

CARBON WORLDS
Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

Russia-EU Mars Research Program to Be Completed

Mars is warmer than some parts of the U.S. and Canada

NASA Mars Rover Opportunity Climbs to High Point on Rim

CARBON WORLDS
Long duration weightlessness in space induces a blood shift

Experts explore the medical safety needs of civilian space travel

NASA, Nissan to Create Interplanetary Driverless Vehicles

The 'human' side of robots at electronics show

CARBON WORLDS
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

CARBON WORLDS
Astronauts take shelter after alarm at space station

Russia delays decision on using ISS after 2020

SpaceX delivers late Xmas gifts to Space Station

Space station worms help battle muscle and bone loss

CARBON WORLDS
Firefly Space Systems and NASA have Inked Space Act Agreement

Vega ready to launch ESA spaceplane

SpaceX CEO Elon Musk wants to shake up satellite industry

Soyuz Installed at Baikonur, Expected to Launch Wednesday

CARBON WORLDS
Ground-breaking research to discover new planets

A twist on planetary origins

NASA releases retro-styled travel posters for newly discovered planets

NameExoWorlds contest opens

CARBON WORLDS
Integrated space-group and crystal-structure determination

Moving origami techniques forward for self-folding 3-D structures

Raytheon's enhanced AESA radar a boon for F/A-18 aircraft

New Satellite Technologies For Cleaner Low Orbits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.