Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Graphene nanoscrolls are formed by decoration of magnetic nanoparticles
by Staff Writers
Umea, Sweden (SPX) Aug 23, 2013


After decoration with maghemite nanoparticles the graphene spontaneously form nanoscrolls. The dark cylinders in the upper part of the image shows graphene nanoscrolls that are covered with a smooth layer of small particles. The nanoscrolls form "bundles" with 5-10 cylinders due to the interaction between the nanoscrolls. The lower part of the image show a simulated image of a graphene sheet in the scrolling process. The region zoomed show a maghemite nanoparticle attached to the graphene sheet. For a larger version of this image please go here.

Researchers at Umea University, together with researchers at Uppsala University and Stockholm University, show in a new study how nitrogen doped graphene can be rolled into perfect Archimedean nano scrolls by adhering magnetic iron oxide nanoparticles on the surface of the graphene sheets. The new material may have very good properties for application as electrodes in for example Li-ion batteries.

Graphene is one of the most interesting materials for future applications in everything from high performance electronics, optical components to flexible and strong materials. Ordinary graphene consists of carbon sheets that are single or few atomic layers thick.

In the study the researchers have modified the graphene by replacing some of the carbon atoms by nitrogen atoms. By this method they obtain anchoring sites for the iron oxide nanoparticles that are decorated onto the graphene sheets in a solution process.

In the decoration process one can control the type of iron oxide nanoparticles that are formed on the graphene surface, so that they either form so called hematite (the reddish form of iron oxide that often is found in nature) or maghemite, a less stable and more magnetic form of iron oxide.

"Interestingly we observed that when the graphene is decorated by maghemite, the graphene sheets spontaneously start to roll into perfect Archimedean nano scrolls, while when decorated by the less magnetic hematite nanoparticles the graphene remain as open sheets, says Thomas Wagberg, Senior lecturer at the Department of Physics at Umea University.

The nanoscrolls can be visualized as traditional "Swiss rolls" where the sponge-cake represents the graphene, and the creamy filling is the iron oxide nanoparticles. The graphene nanoscrolls are however around one million times thinner.

The results that now have been published in Nature Communications are conceptually interesting for several reasons. It shows that the magnetic interaction between the iron oxide nanoparticles is one of the main effects behind the scroll formation.

It also shows that the nitrogen defects in the graphene lattice are necessary for both stabilizing a sufficiently high number of maghemite nanoparticles, and also responsible for "buckling" the graphene sheets and thereby lowering the formation energy of the nanoscrolls.

The process is extraordinary efficient. Almost 100 percent of the graphene sheets are scrolled. After the decoration with maghemite particles the research team could not find any open graphene sheets.

Moreover, they showed that by removing the iron oxide nanoparticles by acid treatment the nanoscrolls again open up and go back to single graphene sheets Caption: Snapshot of a partially re-opened nanoscroll. The atomic layer thick graphene resembles a thin foil with some few wrinkles.

"Besides adding valuable fundamental understanding in the physics and chemistry of graphene, nitrogen-doping and nanoparticles we have reasons to believe that the iron oxide decorated nitrogen doped graphene nanoscrolls have very good properties for application as electrodes in for example Li-ion batteries, one of the most important batteries in daily life electronics, " says Thomas Wagberg.

The study has been conducted within the "The artificial leaf" project which is funded by Knut and Alice Wallenberg foundation to physicist, chemists, and plant science researchers at Umea University.

.


Related Links
Umea University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
SU Chemists Develop 'Fresh, New' Approach to Making Alloy Nanomaterials
Syracuse NY (SPX) Aug 15, 2013
Chemists in The College of Arts and Sciences have figured out how to synthesize nanomaterials with stainless steel-like interfaces. Their discovery may change how the form and structure of nanomaterials are manipulated, particularly those used for gas storage, heterogeneous catalysis and lithium-ion batteries. The findings are the subject of a July 24 article in the journal Small (Wiley-VC ... read more


NANO TECH
NASA Prepares for First Virginia Coast Launch to Moon

NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

NANO TECH
International Space Agencies Outline Steps to Take Humans to Mars

Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

NANO TECH
NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

NANO TECH
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

NANO TECH
Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

NANO TECH
NASA Explores New Uses for Historic Launch Structures

Telemetry data confirms launch of South Korean satellite

ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

NANO TECH
Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

NANO TECH
U.S. firm releases $1,400 scanner to create 3-D printing files

Boeing Communications Relay Satellites Complete Space, Earthly Testing

Mobius strip ties liquid crystal in knots to produce tomorrow's materials and photonic devices

The world's future tallest skyscrapers: who will be first to break the 1,000-meter mark?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement