Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Graphene enables all-electrical control of energy flow from light emitters
by Staff Writers
Barcelona, Spain (SPX) Jan 21, 2015


This is an illustration of the electrically controlled energy flow into photons and plasmons. Image courtesy ICFO. For a larger version of this image please go here.

At the heart of lasers, displays and other light-emitting devices lies the emission of photons. Electrically controlled modulation of this emission is of great importance in applications such as optical communication, sensors and displays. Moreover, electrical control of the light emission pathways opens up the possibility of novel types of nano-photonics devices, based on active plasmonics.

Scientists from ICFO, MIT, CNRS, CNISM and Graphenea have now demonstrated active, in-situ electrical control of the energy flow from erbium ions into photons and plasmons. The experiment was implemented by placing the erbium emitters a few tens of nanometers away from the graphene sheet, whose carrier density (Fermi energy) is electrically controlled.

Partially funded by the EC Graphene Flagship, this study entitled "Electrical control of optical emitter relaxation pathways enabled by graphene", has been published in Nature Physics.

Erbium ions are essentially used for optical amplifiers and emit light at a wavelength of 1.5 micrometers, the so called third telecom window. This is an important window for optical telecommunications because there is very little energy loss in this range, and thus highly efficient information transmission.

The study has shown that the energy flow from erbium into photons or plasmons can be controlled simply by applying a small electrical voltage.

The plasmons in graphene are rather unique, as they are very strongly confined, with a plasmon wavelength that is two orders of magnitude smaller than the wavelength of the emitted photons. As the Fermi energy of the graphene sheet was gradually increased, the erbium emitters went from exciting electrons in the graphene sheet, to emitting photons or plasmons.

The experiments revealed the long-sought-after graphene plasmons at near-infrared frequencies, relevant for these telecommunications applications. In addition, the strong concentration of optical energy offers new possibilities for data storage and manipulation through active plasmonic networks.

Frank Koppens commented: "This work shows that electrical control of light at the nanometer scale is possible and efficient, thanks to the optoelectronics properties of graphene."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
ICFO-The Institute of Photonic Sciences
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Training the next generation of power engineers
Syracuse NY (SPX) Jan 20, 2015
Most people only think about the electricity that powers our homes and gadgets when it isn't there. When the power is humming, we tend to take it for granted. The trouble is, the network that delivers the electricity to keep our lights on, known as the grid, is sometimes pushed to its limits. High demand can lead to blackouts and increased operational costs. At the same time, the grid is being a ... read more


ENERGY TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

ENERGY TECH
Team Working on Strategy to Fix Flash Memory Issue

UA-led HiRISE camera spots long-lost space probe on Mars

Lost and found in space: Beagle 2 seen on Mars 11 years on

Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

ENERGY TECH
Tech barons paint rosy future at Davos despite security fears

U.S. food headed for ISS stalled in Russian customs

US venture capital funding near dot-com boom levels

Singer Sarah Brightman delays space tourist training

ENERGY TECH
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

ENERGY TECH
Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

Astronauts prepare for year-long stay on space station

Astronauts take shelter after alarm at space station

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian firm seals $1 billion deal to supply US rocket engines

SpaceX CEO Elon Musk wants to shake up satellite industry

Firefly Space Systems and NASA have Inked Space Act Agreement

ENERGY TECH
Three nearly Earth-size planets found orbiting nearby star

Three-Planet System Holds Clues to Atmospheres of Earth-size Worlds

Meteorites weren't exactly the building blocks of young planets

A twist on planetary origins

ENERGY TECH
Is glass a true solid?

Scientists 'bend' elastic waves with new metamaterials

Laser-generated surface structures create extremely water-repellent metals

New laser-patterning technique turns metals into supermaterials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.