Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Graphene Exhibits Bizarre New Behavior Well Suited To Electronic Devices
by Staff Writers
Berkeley CA (SPX) Aug 03, 2010


This is a scanning tunneling microscope image of a single layer of graphene on platinum with four nanobubbles at the graphene-platinum border and one in the patch interior. The inset shows a high-resolution image of a graphene nanobubble and its distorted honeycomb lattice due to strain in the bubble. Credit: Crommie lab, UC Berkeley

Graphene, a sheet of pure carbon heralded as a possible replacement for silicon-based semiconductors, has been found to have a unique and amazing property that could make it even more suitable for future electronic devices.

Physicists at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (LBNL) have found that when graphene is stretched in a specific way it sprouts nanobubbles in which electrons behave in a bizarre way, as if they are moving in a strong magnetic field.

Specifically, the electrons within each nanobubble segregate into quantized energy levels instead of occupying energy bands, as in unstrained graphene.

The energy levels are identical to those that an electron would occupy if it were moving in circles in a very strong magnetic field, as high as 300 tesla, which is bigger than any laboratory can produce except in brief explosions, said Michael Crommie, professor of physics at UC Berkeley and a faculty researcher at LBNL.

Magnetic resonance imagers use magnets less than 10 tesla, while the Earth's magnetic field at ground level is 31 microtesla.

"This gives us a new handle on how to control how electrons move in graphene, and thus to control graphene's electronic properties, through strain," Crommie said.

"By controlling where the electrons bunch up and at what energy, you could cause them to move more easily or less easily through graphene, in effect, controlling their conductivity, optical or microwave properties. Control of electron movement is the most essential part of any electronic device."

Crommie and colleagues report the discovery in the July 30 issue of the journal Science.

Aside from the engineering implications of the discovery, Crommie is eager to use this unusual property of graphene to explore how electrons behave in fields that until now have been unobtainable in the laboratory.

"When you crank up a magnetic field you start seeing very interesting behavior because the electrons spin in tiny circles," he said. "This effect gives us a new way to induce this behavior, even in the absence of an actual magnetic field."

Among the unusual behaviors observed of electrons in strong magnetic fields are the quantum Hall effect and the fractional quantum Hall effect, where at low temperatures electrons also fall into quantized energy levels.

The new effect was discovered by accident when a UC Berkeley postdoctoral researcher and several students in Crommie's lab grew graphene on the surface of a platinum crystal.

Graphene is a one atom-thick sheet of carbon atoms arranged in a hexagonal pattern, like chicken wire. When grown on platinum, the carbon atoms do not perfectly line up with the metal surface's triangular crystal structure, which creates a strain pattern in the graphene as if it were being pulled from three different directions.

The strain produces small, raised triangular graphene bubbles 4 to 10 nanometers across in which the electrons occupy discrete energy levels rather than the broad, continuous range of energies allowed by the band structure of unstrained graphene.

This new electronic behavior was detected spectroscopically by scanning tunneling microscopy. These so-called Landau levels are reminiscent of the quantized energy levels of electrons in the simple Bohr model of the atom, Crommie said.

The appearance of a pseudomagnetic field in response to strain in graphene was first predicted for carbon nanotubes in 1997 by Charles Kane and Eugene Mele of the University of Pennsylvania. Nanotubes are a rolled up form of graphene.

Within the last year, however, Francisco Guinea of the Instituto de Ciencia de Materiales de Madrid in Spain, Mikhael Katsnelson of Radboud University of Nijmegen, the Netherlands, and A. K. Geim of the University of Manchester, England predicted what they termed a pseudo quantum Hall effect in strained graphene.

This is the very quantization that Crommie's research group has experimentally observed. Boston University physicist Antonio Castro Neto, who was visiting Crommie's laboratory at the time of the discovery, immediately recognized the implications of the data, and subsequent experiments confirmed that it reflected the pseudo quantum Hall effect predicted earlier.

"Theorists often latch onto an idea and explore it theoretically even before the experiments are done, and sometimes they come up with predictions that seem a little crazy at first. What is so exciting now is that we have data that shows these ideas are not so crazy," Crommie said.

"The observation of these giant pseudomagnetic fields opens the door to room-temperature 'straintronics,' the idea of using mechanical deformations in graphene to engineer its behavior for different electronic device applications."

Crommie noted that the "pseudomagnetic fields" inside the nanobubbles are so high that the energy levels are separated by hundreds of millivolts, much higher than room temperature.

Thus, thermal noise would not interfere with this effect in graphene even at room temperature. The nanobubble experiments performed in Crommie's laboratory, however, were performed at very low temperature.

Normally, electrons moving in a magnetic field circle around the field lines. Within the strained nanobubbles, the electrons move in circles in the plane of the graphene sheet, as if a strong magnetic field has been applied perpendicular to the sheet even when there is no actual magnetic field.

Apparently, Crommie said, the pseudomagnetic field only affects moving electrons and not other properties of the electron, such as spin, that are affected by real magnetic fields.

.


Related Links
University of California - Berkeley
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
German power plant testing CO2-scrubbing algae
Berlin (AFP) July 22, 2010
Swedish energy group Vattenfall said it had launched a major pilot project Thursday using algae to absorb greenhouse gas emissions from a coal-fired power plant in eastern Germany. The two-million-euro (2.6-million-dollar) trial run, which will continue until October 2011, in the depressed Lausitz mining region is one of several experimental attempts in the sector using algae to slash carbon ... read more


CARBON WORLDS
Neil Armstrong, first man on the moon, to turn 80

NASA's ATHLETE Warms Up For High Desert Run

Japan experts call for robot expedition to moon

GRAIL Spacecraft Takes Shape

CARBON WORLDS
Opportunity Back To Normal Operations

NASA And ESA's First Joint Mission To Mars Selects Instruments

Caltech And CSA Awarded NASA Project To Develop Spectrometer Headed To Mars

Spirit May Never Phone Home Again

CARBON WORLDS
Wyle Scientist To Study Stress In Haughton-Mars Project Spaceflight Analog

Planetary Society Urges Debate On NASA Authorization Bill

Astronomer: Manned missions less likely

Panel considers cost of space tourism

CARBON WORLDS
China Contributes To Space-Based Information Access A Lot

China Sends Research Satellite Into Space

China eyes Argentina for space antenna

Seven More For Shenzhou

CARBON WORLDS
Spacewalks Set For Friday And Monday

NASA plans two challenging spacewalks to fix ISS pump

Spacewalk Preparations Continue After Loss Of Cooling Loop

Space station drama as cooling system fails

CARBON WORLDS
New Rocket Launch Period In And Around Tanegashima

Kourou Spaceport Welcomes New Liquid Oxygen And Liquid Nitrogen Production Facility

Sea Launch Signs Agreement With EchoStar

Ariane 5 Is Ready For Its Payload Integration

CARBON WORLDS
Planets In Unusually Intimate Dance Around Dying Star

Detector Technology Could Help NASA Find Earth-Like Exoplanets

NASA Finds Super-Hot Planet With Unique Comet-Like Tail

Recipes For Renegade Planets

CARBON WORLDS
China Leads In Outer Space Pollution

MetOp-B Module Passes Crucial Vacuum Test

Safe And Efficient De-Orbit Of Space Junk Without Making The Problem Worse

RIM unleashes BlackBerry Torch to take on iPhone




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement