Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Glass: characterizing with precision and efficiency
by Staff Writers
Wertheim, Germany (SPX) Oct 30, 2012


File image.

Glass can possess a quite diverse array of characteristics, depending on what ingredients one uses to modify it. A new process now makes the analysis of glass characteristics easier: Up to five-times faster than predecessor methods, this process only requires 20 percent of the material. Researchers will demonstrate the process at the Glasstec trade fair in Dusseldorf.

At home, in the car or with industrial processes - glass is a universal material. Its properties are so extraordinary that frequently there are no alternatives to this material.

Take, for example, high-temperature fuel cells, in which layers of ceramics and metals are alternately attached to each other: to ensure no explosive hydrogen escapes, the metal and ceramic layers must be firmly bound to each other, and the seam must be sealed tight.

Only glass can accomplish this type of seal - and here, we are specifically referring to solder glass. But how does glass behave at such high temperatures?

To what extent does it enlarge? Until now, this question was investigated using a push rod, which pushes from the glass onto a cylinder. If the glass heats up, then it expands and pushes back against the push rod. Were the glass to become molten, however, then it adheres to the push rod and renders it unusable.

Even if seeking to create glass with new qualities, scientists need reliable, efficient and simple methods in order to investigate the characteristics of the glass.

Researchers from the Fraunhofer Institute for Silicate Research ISC in Wertheim have just developed a thermooptical measuring device that makes the comprehensive characterization of glass possible.

"With our system, we can study all glass characteristics simultaneously for the first time ever - and that on a laboratory scale, in other words, with minimal sample material," says Dr. Andreas Diegeler, head of the Center of Device Development at ISC. This system consists of an oven that a CMOS camera "looks into."

This camera enables the researchers to observe the glass during the entire heating process.

The centerpiece for glass characterization is the maximum bubble pressure module, which the scientists can use to measure the viscosity and the surface tension of the glass under molten conditions. The principle behind this concept: The glass is heated in a crucible made of quartz glass.

Since quartz glass has a higher melting point (about 1600 degrees Celsius) than other glass, the quartz glass crucible remains solid while the study glass slowly melts in it.

A quartz glass capillary - in other words, a pipette with an inner diameter of one to three millimeters - is dipped, on a fully-automated basis, into the molten glass through a hole in the roof of the oven.

A precisely defined volume of glass is likewise blown on a fully-automated basis through this pipette into the glass melt. The capillaries in the molten glass are like a drinking straw in a glass of soda: Blow air through the drinking straw into the beverage, and bubbles emerge.

Do the same thing with yoghurt and you see fewer bubbles. Similarly, the researchers can determine the viscosity (flow resistance) of the glass based on the way in which the bubbles develop, and they can also establish the surface tension of the molten glass.

Using the thermooptic measurement principle, they can additionally define other basic qualities of the glass, such as thermal expansion, under application-related conditions.

The process delivers a number of advantages: "On the one hand, it saves time: With the thermooptical system, glass can be characterized at least five times faster than previously.

Because instead of having to produce and individually analyze five samples just to study five characteristic viscosity points of the glass, now we only need one sample, which is studied in only one heating operation.

In addition, the process helps save on resources. Since we only need one sample instead of five, we spare 80 percent of the material - on a small scale, naturally," Diegeler summarizes.

However, this system delivers outstanding services for more than glass alone. It can be used for any type of melting, whether steel or slag.

Another interesting alternative: For test purposes, instead of blowing a gas into the glass that does not react with glass, one can also introduce gas that generates a chemical reaction with the glass, thereby changing its characteristics. This could be an alternative way of developing entirely new types of glass.

.


Related Links
Fraunhofer Institute for Silicate Research ISC
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Safety glass - cut to any shape
Freiburg, Germany (SPX) Oct 30, 2012
Shock-resistance is the great benefit of safety glass. However, the cut of the glass pane can make this difficult: With conventional processes, only straight cuts are possible. Yet a newly-developed method makes it possible to apply any cutting technique. Researchers will display an undulating-cut pane of safety glass at the Glasstec trade fair in Dusseldorf. If an object slams into the gl ... read more


TECH SPACE
Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

Astrium presents results of its study into automatic landing near the Moon's south pole

European mission to search for moon water

TECH SPACE
Baumgartner: Mars travel a waste of money

Opportunity Undertakes Survey Drives Of Local Area

Assessing Drop-Off to Mars Rover's Observation Tray

Valles Marineris - the largest canyon in the Solar System

TECH SPACE
New NASA Online Science Resource Available for Educators and Students

'First' Pakistan astronaut wants to make peace in space

Space daredevil Baumgartner is 'officially retired'

NASA must reinvest in nanotechnology research, according to new Rice University paper

TECH SPACE
China to launch 11 meteorological satellites by 2020

China makes progress in spaceflight research

Patience for Tiangong

China launches civilian technology satellites

TECH SPACE
Packed Week Ahead for Six-Member Crew

New crew docks with ISS: Russia

ISS Crew Gets Ready for New Expedition 33 Trio

New ISS Crew Confirmed

TECH SPACE
Launcher assembly begins for Arianespace's seventh Ariane 5 mission in 2012

Payload preparations begin for Arianespace's next Soyuz flight from French Guiana

SpaceX capsule completes successful first mission

S. Korea sets new window for rocket launch

TECH SPACE
New Study Brings a Doubted Exoplanet 'Back from the Dead'

New small satellite will study super-Earths for ESA

Most Planetary Systems are 'Flatter than Pancakes'

Glitch could end NASA planet search

TECH SPACE
Russian chemists land on the island of stability

Head of iPhone software out in Apple shakeup

Safety glass - cut to any shape

Cost-effective titanium forming




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement