Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Giving transplanted cells a nanotech checkup
by Staff Writers
Baltimore MD (SPX) Feb 13, 2013


Nanosensors (green spheres) are composed of fat and L-arginine molecules, as well as separate indicator molecules that give off MRI-detectable and light signals when cells are alive. Nanosensors are enclosed in a hydrogel membrane along with liver cells (pink). Nutrients and other relatively small molecules (red) are able to travel across the hydrogel membrane to and from the bloodstream. Credit: Sayo Studios.

Researchers at Johns Hopkins have devised a way to detect whether cells previously transplanted into a living animal are alive or dead, an innovation they say is likely to speed the development of cell replacement therapies for conditions such as liver failure and type 1 diabetes. As reported in the March issue of Nature Materials, the study used nanoscale pH sensors and magnetic resonance imaging (MRI) machines to tell if liver cells injected into mice survived over time.

"This technology has the potential to turn the human body into less of a black box and tell us if transplanted cells are still alive," says Mike McMahon, Ph.D., an associate professor of radiology at the Johns Hopkins University School of Medicine who oversaw the study. "That information will be invaluable in fine-tuning therapies."

Regenerative medicine advances depend on reliable means of replacing damaged or missing cells, such as injecting pancreatic cells in people with diabetes whose own cells don't make enough insulin. To protect the transplanted cells from the immune system, while allowing the free flow of nutrients and insulin between the cells and the body, they can be encased in squishy hydrogel membranes before transplantation.

But, explains McMahon, "once you put the cells in, you really have no idea how long they survive." Such transplanted cells eventually stop working in most patients, who must resume taking insulin. At that point, physicians can only assume that cells have died, but they don't know when or why, says McMahon.

With that problem in mind, McMahon's group, which specializes in methods of detecting chemical changes, collaborated with the research group headed by Jeff Bulte, Ph.D., the director of cellular imaging at Hopkins' Institute for Cell Engineering.

Bulte's group devises ways of tracking implanted cells through the body using MRI. Led by research fellow Kannie Chan, Ph.D., the team devised an extremely tiny, or nanoscale, sensor filled with L-arginine, a nutritional supplement that responds chemically to small changes in acidity (pH) caused by the death of nearby cells.

Changes in the acidity would in turn set off changes in sensor molecules embedded in the thin layer of fat that makes up the outside of the nanoparticle, giving off a signal that could be detected by MRI.

To test how these nanosensors would work in a living body, the team loaded them into hydrogel spheres along with liver cells - a potential therapy for patients with liver failure - and another sensor that gives off bioluminescent light only while the cells are alive.

The spheres were injected just under the skin of mice. As confirmed by the light signal, the MRI accurately detected where the cells were in the body and what proportion were still alive. (Such light indicators cannot be used to track cells in humans because our bodies are too large for visible signals to get through, but these indicators allowed the team to check whether the MRI nanosensors were working properly in the mice.)

"It was exciting to see that this works so well in a living body," Chan says. The team hopes that because the components of the system - hydrogel membrane, fat molecules, and L-arginine - are safe for humans, adapting their discovery for clinical use will prove relatively straightforward.

"This should take a lot of the guesswork out of cell transplantation by letting doctors see whether the cells survive, and if not, when they die," Chan says. "That way they may be able to figure out what's killing the cells, and how to prevent it."

Potential applications of the sensors are not limited to cells inside hydrogel capsules, Bulte notes. "These nanoparticles would work outside capsules, and they could be paired with many different kinds of cells. For example, they may be used to see whether tumor cells are dying in response to chemotherapy," he says.

Other authors on the paper were Guanshu Liu, Xiaolei Song, Heechul Kim, Tao Yu, Dian R. Arifin, Assaf A. Gilad, Justin Hanes, Piotr Walczak and Peter C. M. van Zijl, all of the Johns Hopkins University School of Medicine. The study was funded by the National Institute of Biomedical Imaging and Bioengineering (grant numbers R01 EB012590, EB015031, EB015032 and EB007825).

.


Related Links
Johns Hopkins Medicine
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Boston College researchers' unique nanostructure produces novel 'plasmonic halos'
Chestnut Hill MA (SPX) Feb 12, 2013
Using the geometric and material properties of a unique nanostructure, Boston College researchers have uncovered a novel photonic effect where surface plasmons interact with light to form "plasmonic halos" of selectable output color. The findings appear in the journal Nano Letters. The novel nanostructure proved capable of manipulating electron waves known as surface plasmon polaritons, or ... read more


NANO TECH
Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

NANO TECH
In milestone, Mars rover collects first bedrock sample

How The World's Saltiest Pond Gets Its Salt; Implications For Water On Mars

Lockheed Martin Completes Assembly, Begins Environmental Testing of NASA's MAVEN Spacecraft

NASA Curiosity Rover Collects First Martian Bedrock Sample

NANO TECH
Supersonic skydiver even faster than thought

Ahmadinejad says ready to be Iran's first spaceman

Iran's Bio-Capsule Comes Back from Space

A Hero For Humankind: Yuri Gagarin's Spaceflight

NANO TECH
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

NANO TECH
Progress docks with ISS

NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

NANO TECH
Ariane 5 delivers record payload off back-to-back launches this week

Eutelsat and Arianespace sign new multi-year multiple launch services agreement

Ariane 5 Arrives At Kourou For 4th Automated Transfer Vehicle Mission

Rocketdyne Powers Atlas 5 Upper Stage, Placing New Landsat In Orbit

NANO TECH
Earth-like planets are right next door

Direct Infrared Image Of An Arm In Disk Demonstrates Transition To Planet Formation

Kepler Data Suggest Earth-size Planets May Be Next Door

Earth-like planets may be closer than thought: study

NANO TECH
3D Printing on the Micrometer Scale

Nextdoor renovates before taking on the world

High-energy X-rays shine light on mystery of Picasso's paints

Satellite undergoes extreme testing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement