Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Giant Impact Explains Mars Dichotomy
by Staff Writers
Santa Cruz CA (SPX) Jun 26, 2008


Most planetary impacts are not head-on, Asphaug said. His group found a "sweet spot" of impact conditions that result in a hemispheric dichotomy matching the observations. Those conditions include an impactor about one-half to two-thirds the size of the Moon, striking at an angle of 30 to 60 degrees.

The dramatic differences between the northern and southern hemispheres of Mars have puzzled scientists for 30 years. One of the proposed explanations--a massive asteroid impact--now has strong support from computer simulations carried out by two groups of researchers.

Planetary scientists at the University of California, Santa Cruz, were involved in both studies, which appear in the June 26 issue of Nature.

"It's a very old idea, but nobody had done the numerical calculations to see what would happen when a big asteroid hits Mars," said Francis Nimmo, associate professor of Earth and planetary sciences at UCSC and first author of one of the papers.

Nimmo's group found that such an impact could indeed produce the observed differences between the Martian hemispheres. The other study used a different approach and reached the same conclusion. Nimmo's paper also suggests testable predictions about the consequences of the impact.

The so-called hemispheric dichotomy was first observed by NASA's Viking missions to Mars in the 1970s. The Viking spacecraft revealed that the two halves of the planet look very different, with relatively young, low-lying plains in the north and relatively old, cratered highlands in the south.

Some 20 years later, the Mars Global Surveyor mission showed that the crust of the planet is much thicker in the south and also revealed magnetic anomalies present in the southern hemisphere and not in the north.

"Two main explanations have been proposed for the hemispheric dichotomy--either some kind of internal process that changed one half of the planet, or a big impact hitting one side of it," Nimmo said.

"The impact would have to be big enough to blast the crust off half of the planet, but not so big that it melts everything. We showed that you really can form the dichotomy that way."

Nimmo's group includes UCSC graduate student Shawn Hart, associate researcher Don Korycansky, and Craig Agnor of Queen Mary University, London. The other paper is by Margarita Marinova and Oded Aharonson of the California Institute of Technology and Erik Asphaug, professor of Earth and planetary sciences at UCSC.

The quantitative model used by Nimmo's group calculated the effects of an impact in two dimensions. Asphaug's group used a different model to calculate impacts in three dimensions, but with lower resolution (i. e., less detail in the simulation).

"The two approaches are very complementary; putting them together gives you a complete picture," Nimmo said.

"The two-dimensional model provides high resolution, but you can only look at vertical impacts. The three-dimensional model allows nonvertical impacts, but the resolution is lower so you can't track what happens to the crust."

Most planetary impacts are not head-on, Asphaug said. His group found a "sweet spot" of impact conditions that result in a hemispheric dichotomy matching the observations. Those conditions include an impactor about one-half to two-thirds the size of the Moon, striking at an angle of 30 to 60 degrees.

"This is how planets finish their business of formation," Asphaug said. "They collide with other bodies of comparable size in gargantuan collisions. The last of those big collisions defines the planet."

According to Nimmo's analysis, shock waves from the impact would travel through the planet and disrupt the crust on the other side, causing changes in the magnetic field recorded there. The predicted changes are consistent with observations of magnetic anomalies in the southern hemisphere, he said.

In addition, new crust that formed in the northern lowlands would be derived from deep mantle rock melted by the impact and should have significantly different characteristics from the southern hemisphere crust. Certain Martian meteorites may have originated from the northern crust, Nimmo said.

The study also suggests that the impact occurred around the same time as the impact on Earth that created the Moon.

related report
Evidence Of Massive Asteroid Impact On Mars Supported By Computer Simulations
The surface landscape of Mars, divided into lowlands in the north and highlands in the south, has long perplexed planetary scientists. Was it sculpted by several small impacts, via mantle convection in the planet's interior, or by one giant impact?

Now scientists at the California Institute of Technology have shown through computer modeling that the Mars dichotomy, as the divided terrain has been termed, can indeed be explained by one giant impact early in the planet's history.

"The dichotomy is arguably the oldest feature on Mars," notes Oded Aharonson, associate professor of planetary science at Caltech and an author of the study. The feature arose more than four billion years ago, before the rest of the planet's complex geologic history was superimposed.

Scientists had previously discounted the idea that a single, giant impactor could have created the lower elevations and thinner crust of Mars's northern region, says Margarita Marinova, a graduate student in Caltech's Division of Geological and Planetary Sciences and lead author of the study, which appears June 26 in the journal Nature. This special issue of the journal features a trio of papers on the Mars dichotomy.

For one thing, Marinova explains, it was thought that a single impact would leave a circular footprint, but the outline of the northern lowlands region is elliptical. There is also a distinct lack of a crater rim: topography increases smoothly from the lowlands to the highlands without a lip of concentrated material in between, as is the case in small craters.

Finally, it was believed that a giant impactor would obliterate the record of its own occurrence by melting a large fraction of the planet and forming a magma ocean.

"We set out to show that it's possible to make a big hole without melting the majority of the surface of Mars," Aharonson says. The team modeled a range of projectile parameters that could yield a cavity the size and ellipticity of the Mars lowlands without melting the whole planet or making a crater rim.

After cranking 500 simulations combining various energies, velocities, and impact angles through the Caltech division's Beowulf-class computer cluster CITerra, the researchers narrowed in on a "sweet spot"--a range of single-impact parameters that would make exactly the type of crater found on Mars.

Although a large impact had been suggested (and discounted) in the past, Aharonson says, computers weren't fast enough to run the models. "The ability to search for parameters that allow an impact compatible with observations is enabled by the dedicated machine at Caltech," he adds.

The favored simulation conditions outlined by the sweet spot suggest an impact energy of around 1029 joules, which is equivalent to 100 billion gigatons of TNT. The impactor would have hit Mars at an angle between 30 and 60 degrees while traveling at 6 to 10 kilometers per second. By combining these factors, Marinova calculated that the projectile was roughly 1,600 to 2,700 kilometers across.

Estimates of the energy of the Mars impact place it squarely between the impact that is thought to have led to the extinction of dinosaurs on Earth 65 million years ago and the one believed to have extruded our planet's moon four billion years ago.

Indeed, the timing of formation of our moon and the Mars dichotomy is not coincidental, Marinova notes. "This size range of impacts only occurred early in solar system history," she says. The results of this study are also applicable to understanding large impact events on other heavenly bodies, like the Aitken Basin on the moon and the Caloris Basin on Mercury.

The Caltech study comes at a time of renewed interest in the ancient crustal feature on Mars, Aharonson notes. Also in this issue of Nature, Jeffrey Andrews-Hanna and Maria Zuber of MIT and Bruce Banerdt of JPL examine the gravitational and topographic signature of the dichotomy with information from the Mars orbiters. Another accompanying report, from a group at UC Santa Cruz led by Francis Nimmo, explores the expected consequences of mega-impacts. The other author on this study is Erik Asphaug, a professor of earth and planetary sciences at UC Santa Cruz.

.


Related Links
the missing link Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Amateur Astronomer Discovers Fastest Rotator In The Solar System
Cardiff, UK (SPX) May 29, 2008
A British amateur astronomer has discovered the fastest rotating natural object known in our Solar System. His observations, made using a telescope normally shared by school students and professional scientists, have proved that the newly-discovered asteroid, 2008 HJ is revolving once every 42.7 seconds, classifying it is as a 'superfast rotator'. His discovery will boost our sparse knowle ... read more


IRON AND ICE
Moon-Bound NASA Spacecraft Passes Major Preflight Tests

Northrop Grumman Completes LCROSS Thermal Vacuum Testing

NASA Study Provides Next Step To Establishing Lunar Outpost

Apollo Relic Reveals Its Secrets

IRON AND ICE
Game of two halves: Scientists solve Martian riddle

Laser Fluorescence Could Find Life On Mars

Phoenix Shake And Bake

Phoenix lander confirms presence of ice on Mars

IRON AND ICE
New Developments On The Road To Cosmos 2

Options For Space Tourists

Russian businessmen book spaceship rides: report

ATK Conducts First Test For Ares I-X First Stage Separation System

IRON AND ICE
Gallup Poll Shows Americans Unconcerned About China Space Program

Chinese company develops 'UFO': report

China manned space flight set for October: state media

Two Suits For Shenzhou

IRON AND ICE
Discovery undocks from ISS

Shuttle astronauts bid farewell to space station crew

Shuttle Astronauts Bid Farewell To Space Station Crew

Astronauts test Japanese robotic arm

IRON AND ICE
CU-Boulder Students Set To Launch Student Rocket Payloads June 27

ProtoStar I And BADR-6 Are Ready For Next Ariane 5 Launch

Kourou Spaceport Receives Fifth Ariane 5 For 2008

The Fourth Ariane 5 of 2008 Is Delivered To Arianespace For A July 4 liftoff

IRON AND ICE
Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

Vanderbilt Astronomers Getting Into Planet-Finding Game

NASA Selects MIT-Led Team To Develop Planet-Searching Satellite

IRON AND ICE
BAE Computers To Manage Data Processing For Satellite Missions

Space Radar To Improve Mining Safety

'Spore' computer game aliens coming to virtual life

Integral Systems Integrated Solution To Support JCSAT-12




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement