Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Getting the carbon out of emissions
by David L. Chandler for MIT News Office
Boston MA (SPX) Jun 27, 2013


Graduate student Michael Stern and his co-workers built this laboratory-scale device to prove the principles behind the electrochemical carbon-capture system. Photo courtesy of Michael Stern

Many researchers around the world are seeking ways to "scrub" carbon dioxide (CO2) from the emissions of fossil-fuel power plants as a way of curbing the gas that is considered most responsible for global climate change.

But most such systems rely on complex plumbing to divert the steam used to drive the turbines that generate power in these plants, and such systems are not practical as retrofits to existing plants.

Now, researchers at MIT have come up with a scrubbing system that requires no steam connection, can operate at lower temperatures, and would essentially be a "plug-and-play" solution that could be added relatively easily to any existing power plant.

The system is a variation on a well-studied technology that uses chemical compounds called amines, which bind with CO2 in the plant's emission stream and can then release the gas when heated in a separate chamber.

But the conventional process requires that almost half of the power plant's low-pressure steam be diverted to provide the heat needed to force the amines to release the gas. That massive diversion would require such extensive changes to existing power plants that it is not considered economically feasible as a retrofit.

In the new system, an electrochemical process replaces the steam-based separation of amines and CO2. This system only requires electricity, so it can easily be added to an existing plant.

The system uses a solution of amines, injected at the top of an absorption column in which the effluent gases are rising from below. The amines bind with CO2 in the emissions stream and are collected in liquid form at the bottom of the column. Then, they are processed electrochemically, using a metal electrode to force the release of the CO2; the original amine molecules are then regenerated and reused.

As with the conventional thermal-amine scrubber systems, this technology should be capable of removing 90 percent of CO2 from a plant's emissions, the researchers say. But while the conventional CO2-capture process uses about 40 percent of a plant's power output, the new system would consume only about 25 percent of the power, making it more attractive.

In addition, while steam-based systems must operate continuously, the all-electric system can be dialed back during peak demand, providing greater operational flexibility, Stern says. "Our system is something you just plug in, so you can quickly turn it down when you have a high cost or high need for electricity," he says.

Another advantage is that this process produces CO2 under pressure, which is required to inject the gas into underground reservoirs for long-term disposal. Other systems require a separate compressor to pressurize the gas, creating further complexity and inefficiency.

The chemicals themselves - mostly small polyamines - are widely used and easily available industrial materials, says Hatton, the Ralph Landau Professor of Chemical Engineering Practice. Further research will examine which of several such compounds works best in the proposed system.

So far, the research team, which also includes former MIT research scientist Fritz Simeon and Howard Herzog, a senior research engineer at the MIT Energy Initiative, has done mathematical modeling and a small-scale laboratory test of the system. Next, they hope to move on to larger-scale tests to prove the system's performance. They say it could take five to 10 years for the system to be developed to the point of widespread commercialization.

Because it does not rely on steam from a boiler, this system could also be used for other applications that do not involve steam - such as cement factories, which are among the leading producers of CO2 emissions, Stern says. It could also be used to curb emissions from steel or aluminum plants.

It could also be useful in other CO2 removal, Hatton says, such as in submarines or spacecraft, where carbon dioxide can accumulate to levels that could endanger human health, and must be continually removed.

The new electrochemical system is described in a paper just published online in the journal Energy and Environmental Science, and written by doctoral student Michael Stern, chemical engineering professor T. Alan Hatton and two others.

.


Related Links
Massachusetts Institute Of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
International first with the energy consumer of the future
Groningen, the Netherlands (SPX) Jun 24, 2013
Six Dutch companies, three knowledge institutes and 40 households will initiate a pilot in Groningen and Hoogkerk in which consumers will be testing innovative, smart energy services related to sustainable energy choices and cost savings. The objective is to investigate which smart energy services best meet the consumer's requirements, in order to implement a sustainable and cost effective ... read more


ENERGY TECH
Metamorphosis of Moon's Water Ice Explained

Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

ENERGY TECH
Mars Rover Opportunity Trekking Toward More Layers

Mars had oxygen-rich atmosphere 4,000 million years ago

Billion-Pixel View of Mars Comes From Curiosity Rover

Study: Mars may have had ancient oxygen-rich atmosphere

ENERGY TECH
PayPal launches quest for intergalactic currency

NASA Bill Would 'End Reliance on Russia,' Nix Asteroid Capture Project

Britain shut down UFO desk after finding no threat: files

New Zealand emerges as guinea pig for global tech firms

ENERGY TECH
China calls for international cooperation in manned space program

Shenzhou 10 Returns Safely To Earth

Home of space dreams

China's Shenzhou-10 spacecraft returns to Earth

ENERGY TECH
Russian cosmonauts conduct space station tasks in spacewalk

Accelerating ISS Science With Upgraded Payload Operations Integration Center

Strange Flames on the ISS

Europe's space truck docks with ISS

ENERGY TECH
SpaceX Will Launch Turkmenistan Satellite For Thales Alenia Space

New Mexico Space Grant Consortium student experiments blast into space from Spaceport America

Arianespace Soyuz Puts Four O3b Networks' Birds Into Orbit

Four O3b Network birds integrated to Arianespace Soyuz launcher

ENERGY TECH
Gas-giant exoplanets seen clinging close to their parent stars

First Transiting Planets in a Star Cluster Discovered

Astronomers find three 'super-Earths' in nearby star's habitable zone

Retirement for planet-hunting space probe

ENERGY TECH
Laser guided codes advance single pixel terahertz imaging

New laser shows what substances are made of; could be new eyes for military

Google making videogame console and smart watch: report

Ames Laboratory scientists solve riddle of strangely behaving magnetic material




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement