Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Getting To Know One Of The Four Fundamental Forces Of The Universe
by Staff Writers
Richland WA (SPX) Apr 04, 2011


Physicists trying to identify all the subatomic particles thought to exist have found another two. The latest finds belong to the bottomonium family. Source: PNNL.

In new work, high-energy physicists have observed two long-sought quantum states in the bottomonium family of sub-atomic particles. The result will help researchers better understand one of the four fundamental forces of the universe - the strong force - that helps govern the interactions of matter.

Researchers from an international group of high-energy physicists called the Belle Collaboration observed the hb (pronounced h-sub-b) particles in data from Japan's KEK particle accelerator in Tsukuba, Japan. The Belle Collaboration presented their findings at the 25th annual particle physics conference at La Thuile, Italy in early March.

"We want to understand the underlying unifying theory of everything. Part of this is obtaining a deeper understanding of the strong force," said physicist David Asner of the Department of Energy's Pacific Northwest National Laboratory and a member of the Belle Collaboration. "The study of these new states will let us test theories describing the strong force."

Most people have heard of gravity and even electromagnetism, but these are only two of the four forces studied by physicists. Researchers need to explore two others, the so-called "strong" and "weak" forces, to get a well-rounded understanding of the universe.

To study the strong force, researchers turn to quarks, particles smaller than individual pieces of the atom. In fact, quarks come together to make protons and neutrons, the components of an atom's nucleus. In addition, quarks can also form mesons, particles made up of quarks and their anti-matter counterparts. And just as electromagnetism binds electrons to the nucleus in an atom, the strong force binds quarks together within a proton, a neutron, or a meson.

The mesons Asner and colleagues study are made from bottom quarks - one of six flavors of quarks. In this family of mesons called bottomonium, a bottom quark and anti-bottom quark zoom around each other in one of more than a dozen different orbits, some higher in energy, some lower. Each orbit corresponds to a different "state" of bottomonium with just the two quarks but a different mass, thanks to Einstein's Theory of Relativity.

Mesons such as bottomonium are made and studied in huge instruments called particle accelerators such as KEK in Japan or the Tevatron at Fermi National Accelerator Laboratory in Batavia, Ill., also known as atom smashers. In the KEK accelerator, electrons smash at high speed into their anti-matter counterparts, positrons.

The collisions make bottomonium particles containing high amounts of energy, which then fall apart into lower-energy bottomonium states. It's a little like identifying a model of car by smashing it to bits and examining the pieces.

Physicists have been identifying and cataloguing these bottomonium states since 1977, when researchers found the first bottomonium particle.

Out for a Spin
The Belle Collaboration, comprised of 400 physicists from 14 countries, has been smashing electrons and positrons at Japan's KEK-B for more than a decade. Asner and colleagues at PNNL, along with Todd Pedlar at Luther College in Decorah, Iowa, joined the Belle Collaboration in 2010 and began analyzing previously collected data, searching for a certain type of bottomonium state called a spin singlet.

Although physicists refer to "spin", the quarks are not actually rotating on their axes. Instead spin refers to magnetism - the quark and anti-quark are like tiny bar magnets with a north and south pole. In a spin singlet, the quark and anti-quark "magnetic poles" point in the opposite direction and cancel each other out. Only one type of spin singlet had been observed before - ?b (eta-sub-b) - by researchers at the SLAC National Accelerator Laboratory in 2008.

The spin singlet ?b has the lowest energy of all the bottomonium states, and the spin singlet that Asner and colleagues were looking for, hb, had slightly higher energy.

Physics theory predicted the spin singlet hb would appear in the debris from one of the highest energy bottomonium states, but only about once every 100 times that the particular bottomonium particle fell to pieces. In addition, the high energy particle spits out other unrelated particles as it slams down into the hb state. These shrapnel bits ricochet around and hit each other, causing background noise.

From Theory to Reality
Between the rarity of hb's appearance and the high background noise, the analysis team had to sift through large amounts of data to find their needle in the haystack. The team included Asner's group and two Russian scientists - Roman Mizuk from the Institute for Theoretical and Experimental Physics in Moscow and Alexander Bondar from the Budker Institute of Nuclear Physics, Novosibirsk.

The team found not only hb, but another bottomonium particle of somewhat higher energy, hb(2P), and determined their masses. In addition, the smashing produced more of the particles than expected, suggesting that hb and hb(2P) arise from what physicists call an "exotic" process, which means simply they're not (yet) sure how they arise.

The team also observed a particular kind of "hyperfine splitting" in bottomonium for the first time. How the two quarks spin around each other in the hb singlet causes it to be slightly heavier relative to the average masses of other bottomonium states.

This small mass difference is known as "hyperfine splitting", and its measurement is the only means of determining the direct interaction between the quark spins when they are in certain orbits known as the P-waves. This is the first time P-wave hyperfine splitting has been observed in bottomonium.

The heaviest quarks - such as the bottom quark - give some of the most precise measurements of the fundamental properties of the strong force. The results of the measurements Asner and his collaborators have made represent a significant advance in the understanding of the bottomonium system, and the role of spin interactions in quark-antiquark systems. Understanding how these systems operate will help them and other scientists test the strong force and its role in the universe.

.


Related Links
Belle Collaboration
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Mysterious "Ribbon" Of Energy And Particles Isolated
Durham NH (SPX) Apr 01, 2011
In a paper to be published in the April, 2011, issue of The Astrophysical Journal, scientists on NASA's Interstellar Boundary Explorer (IBEX) mission, including lead author Nathan Schwadron and others from the University of New Hampshire, isolate and resolve the mysterious "ribbon" of energy and particles the spacecraft discovered in the heliosphere - the huge bubble that surrounds our solar sys ... read more


TIME AND SPACE
84 Teams To Compete In NASA Great Moonbuggy Race

A New View Of Moon

Super Full Moon

LRO Delivers Treasure Trove Of Data

TIME AND SPACE
Study Of 'Ruiz Garcia' Rock Completed

Next Mars Rover Gets A Test Taste Of Mars Conditions

Alternatives Have Begun In Bid To Hear From Spirit

Opportunity Completes Study Of Ruiz Garcia Rock

TIME AND SPACE
Getting To Mars Means Stopping And Landing

Aerojet Propulsion Assists Voyager 1 Precision Maneuver At The Edge Of The Solar System

China set to outstrip US in science research output

NASA Makes Selection For Integrated Communications Services

TIME AND SPACE
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

TIME AND SPACE
Station Fires Engines To Avoid Orbital Debris

Successful First Mission For Aerospace Breakup Recorder

Three New ISS Crew Members Launch From Kazakhstan

Russia To Launch Space Freighter To ISS On April 27

TIME AND SPACE
Final Countdown Is Underway For Second Ariane 5 Flight Of 2011

Next Ariane 5 Mission Ready For March 30 Liftoff

Another Ariane 5 Completes Its Initial Build-Up At The Spaceport

Two Ariane 5 And One Soyuz Flights Are Now Being Prepared

TIME AND SPACE
White Dwarfs Could Be Fertile Ground For Other Earths

NASA Announces 2011 Carl Sagan Fellows

Report Identifies Priorities For Planetary Science 2013-2022

Planetary Society Statement On Planetary Science Decadal Survey For 2013-2022

TIME AND SPACE
New Laser Technology Could Revolutionize Communications

Japan dumps low-level radioactive water into sea

NASA Airborne Radar Set to Image Hawaiian Volcano

Affectiva technology taps into people's emotions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement