Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CLIMATE SCIENCE
Geoengineering approaches to reduce climate change unlikely to succeed
by Staff Writers
Munich, Germany (SPX) Dec 14, 2013


Heavy rainfall events can be more common in a warmer world (Credit: Annett Junginger, distributed via imaggeo.egu.eu).

Reducing the amount of sunlight reaching the planet's surface by geoengineering may not undo climate change after all. Two German researchers used a simple energy balance analysis to explain how the Earth's water cycle responds differently to heating by sunlight than it does to warming due to a stronger atmospheric greenhouse effect.

Further, they show that this difference implies that reflecting sunlight to reduce temperatures may have unwanted effects on the Earth's rainfall patterns. The results are now published in Earth System Dynamics, an open access journal of the European Geosciences Union (EGU).

Global warming alters the Earth's water cycle since more water evaporates to the air as temperatures increase. Increased evaporation can dry out some regions while, at the same time, result in more rain falling in other areas due to the excess moisture in the atmosphere. The more water evaporates per degree of warming, the stronger the influence of increasing temperature on the water cycle. But the new study shows the water cycle does not react the same way to different types of warming.

Axel Kleidon and Maik Renner of the Max Planck Institute for Biogeochemistry in Jena, Germany, used a simple energy balance model to determine how sensitive the water cycle is to an increase in surface temperature due to a stronger greenhouse effect and to an increase in solar radiation. They predicted the response of the water cycle for the two cases and found that, in the former, evaporation increases by 2% per degree of warming while in the latter this number reaches 3%. This prediction confirmed results of much more complex climate models.

"These different responses to surface heating are easy to explain," says Kleidon, who uses a pot on the kitchen stove as an analogy. "The temperature in the pot is increased by putting on a lid or by turning up the heat - but these two cases differ by how much energy flows through the pot," he says.

A stronger greenhouse effect puts a thicker 'lid' over the Earth's surface but, if there is no additional sunlight (if we don't turn up the heat on the stove), extra evaporation takes place solely due to the increase in temperature. Turning up the heat by increasing solar radiation, on the other hand, enhances the energy flow through the Earth's surface because of the need to balance the greater energy input with stronger cooling fluxes from the surface. As a result, there is more evaporation and a stronger effect on the water cycle.

In the new Earth System Dynamics study the authors also show how these findings can have profound consequences for geoengineering. Many geoengineering approaches aim to reduce global warming by reducing the amount of sunlight reaching the Earth's surface (or, in the pot analogy, reduce the heat from the stove).

But when Kleidon and Renner applied their results to such a geoengineering scenario, they found out that simultaneous changes in the water cycle and the atmosphere cannot be compensated for at the same time. Therefore, reflecting sunlight by geoengineering is unlikely to restore the planet's original climate.

"It's like putting a lid on the pot and turning down the heat at the same time," explains Kleidon. "While in the kitchen you can reduce your energy bill by doing so, in the Earth system this slows down the water cycle with wide-ranging potential consequences," he says.

Kleidon and Renner's insight comes from looking at the processes that heat and cool the Earth's surface and how they change when the surface warms. Evaporation from the surface plays a key role, but the researchers also took into account how the evaporated water is transported into the atmosphere.

They combined simple energy balance considerations with a physical assumption for the way water vapour is transported, and separated the contributions of surface heating from solar radiation and from increased greenhouse gases in the atmosphere to obtain the two sensitivities.

One of the referees for the paper commented: "it is a stunning result that such a simple analysis yields the same results as the climate models."

This research is presented in the paper 'A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change' published in the EGU open access journal Earth System Dynamics on 05 December 2013.

Kleidon, A. and Renner, M.: A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change, Earth Syst. Dynam., 4, 455-465, doi:10.5194/esd-4-455-2013, 2013.

.


Related Links
European Geosciences Union
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Report Calls Attention To Abrupt Impacts From Climate Change
Washington DC (SPX) Dec 13, 2013
Climate change has increased concern over possible large and rapid changes in the physical climate system, which includes the Earth's atmosphere, land surfaces, and oceans. Some of these changes could occur within a few decades or even years, leaving little time for society and ecosystems to adapt. A new report from the National Research Council extends this idea of abrupt climate change, ... read more


CLIMATE SCIENCE
Mining the moon is pie in the sky for China: experts

Ancient crater could hold clues about moon's mantle

Minerals in giant impact crater may be clues to moon's makeup, origin

Silent Orbit for China's Moon Lander

CLIMATE SCIENCE
NASA poised to launch Mars atmosphere probe

The Tough Task of Finding Fossils While Wearing a Spacesuit

Mars One Selects Lockheed Martin to Study First Private Unmanned Mission to Mars

SSTL selected for first private Mars mission

CLIMATE SCIENCE
European consortium space company to offer 'affordable' trips to space

Planning group calls for National Space Policy in Britain

Quails in orbit: French cuisine aims for the stars

Heat Shield for NASA's Orion Spacecraft Arrives at Kennedy Space Center

CLIMATE SCIENCE
China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

China's Jade Rabbit lunar rover sends first photos from moon

CLIMATE SCIENCE
Altitude of International Space Station raised

NASA mulls spacewalks to fix space station

NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

CLIMATE SCIENCE
Arianespace orders 18 rockets for 2 bn euros

Iran sends second monkey into space

SpaceX to bid for rights to historic NASA launch pad

Arianespace to launch GSAT-15 and GSAT-16 satellites for India

CLIMATE SCIENCE
Feature of Earth's atmosphere may help in search for habitable planets

Astronomers discover planet that shouldn't be there

Hot Jupiters Highlight Challenges in the Search for Life Beyond Earth

Astronomers find strange planet orbiting where there shouldn't be one

CLIMATE SCIENCE
New sensor tracks zinc in cells

Morphing material has mighty potential

Polymers can be semimetals

A Stopwatch for Electron Flashes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement