Subscribe free to our newsletters via your
. 24/7 Space News .

Genetic maps of ocean algae show bacteria-like flexibility
by Staff Writers
New York NY (SPX) Jun 17, 2013

This is a coccolithophore bloom off Brittany, France. Credit: (Jacques Descloitres, NASA).

Smaller than a speck of dust, Emiliania huxleyi plays an outsized role in the world's seas. Ranging from the polar oceans to the tropics, these free-floating photosynthetic algae remove carbon dioxide from the air, help supply the oxygen that we breathe, and form the base of marine food chains. When they proliferate, their massive turquoise blooms are visible from space.

Now scientists have discovered one of the keys to E. huxleyi's success. A seven-year effort by 75 researchers from 12 countries to map its genome has revealed a set of core genes that mix and match with a set of variable genes that likely allows E. huxleyi, or Ehux, to adapt to different environments. Their results are described in the latest issue of Nature.

Over generations, the exchange of material within Ehux's so-called "pan-genome" has allowed it to evolve in far-flung places. "In the sea, we thought that only bacteria were shuffling around their genes in this way so it was a real shock to see that Ehux was doing the same thing," said senior co-author of the study Sonya Dyhrman, a microbial oceanographer at Columbia University's Lamont-Doherty Earth Observatory.

Like all phytoplankton, Ehux harvests sunlight from the upper layer of the world's oceans. But it sets itself apart by building armor-like plates of chalk, or coccoliths. It lives mostly in cold, nutrient-rich waters but also thrives at the warm, nutrient-poor equator. Its variety of shapes and sizes, and the diverse places it calls home, hint at its extreme versatility.

Two-thirds of Ehux's genes are shared among all strains. This core genome allows Ehux to thrive under low levels of phosphorus and iron, elements key to life but in short supply in the ocean. The remaining third of its genes are present in one but not all strains. In this variable gene pool are those that allow Ehux to use varying forms of nitrogen, another relatively scarce element in the sea. This flexibility likely allows it to adapt to changing environmental conditions.

A pan-genome has previously been seen only in some marine bacteria, organisms lacking enclosed nuclei. Ehux is a eukaryote-an organism with an enclosed nucleus, like all plants and animals. This is the first description of a pan-genome in eukaryotic marine algae.

"We're starting to get a window into the variations that allow the oceans to function the way they do," said Tatiana Rynearson, an oceanographer at University of Rhode Island who was not involved in the study. "Will this pan genome trend hold for other microalgae in the ocean?"

Understanding what makes Ehux so easygoing may help scientists understand how rising industrial carbon emissions will affect climate and ocean health in the future. Industrial carbon is warming Earth's atmosphere but also acidifying its oceans. Coccolithophores play an important role in removing carbon from both places.

They combine it with calcium to build their coccoliths-for each ton, removing 320 pounds of carbon. They also convert it into biomass during photosynthesis, producing oxygen as a byproduct. What's more, their blooms release dimethyl sulfide into the air, creating clouds, which reflect sunlight into space and cool the planet.

Depending on where they are and what they're doing, coccolithophores can also release carbon dioxide, making it difficult for scientists to say for sure whether they take up or release more carbon over time. This question becomes important as increasing levels of carbon in the atmosphere change the ocean's chemistry. As seawater acidifies, the form of carbon that Ehux and other calcifying organisms need to build their coccoliths become scarcer. If seawater grows acidic enough, it could dissolve them entirely.

Ehux may adapt, and even grow better under more acidic conditions, but its contribution to the carbon cycle could change dramatically. The genome allows researchers to study how the pan-genome is expressed, and potentially predict Ehux's response. "Where will it be?" said Dyhrman. "What will it be doing? These seem like simple questions but they could have a big impact on the net result of how carbon in the ocean is cycled."

On the eukaryotic tree of life, Ehux belongs to the haptophytes, which are important for understanding how eukaryotes, and especially land plants, evolved. The genome brings scientists closer to understanding the evolution of life on Earth as well as how organisms evolve to exploit diverse environments. "It gives you the code to decipher the signals you see in the sea," said Dyhrman.

The Ehux genome revealed other surprises that could lead to practical benefits. Some of its metabolites, known as polyketides, have anti-microbial, anti-fungal, anti-parasitic and anti-tumor properties that could be used to treat disease. Identifying the genes and proteins used in the coccolith-building process could also lead to the design of new materials for bone replacement, sensing systems and optoelectronic devices.


Related Links
The Earth Institute at Columbia University
Water News - Science, Technology and Politics

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Ocean acidification killing oysters by inhibiting shell formation
Washington DC (SPX) Jun 17, 2013
For the past several years, the Pacific Northwest oyster industry has struggled with significant losses due to ocean acidification as oyster larvae encountered mortality rates sufficient to render production no longer economically feasible. Now, a new study has documented why oysters appear so sensitive to increasing acidity. It isn't necessarily a case of acidic water dissolving their she ... read more

LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

China confident in space exploration

A letter to China's first space teacher from U.S. predecessor

Space enthusiasts dream big after Shenzhou-10 launch

The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

China's Naughty Space Models

China's space dream crystallized with Shenzhou-10 launch

China astronauts enter space module

China to send second woman into space: officials

Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

INSAT-3D is delivered to French Guiana for Arianespace's next Ariane 5 launch

A dream launch for Shenzhou X

Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

MakerBot Opens New Manufacturing Factory in Brooklyn

Echoes can reveal the shape of a room

Chinese astronauts complete warm-up maintenance work in space module

Raytheon awarded contract for F-15C AESA radars

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement