Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Generating Mobius strips of light
by Staff Writers
Rochester NY (SPX) Jan 30, 2015


Mobius strips, as the one represented here, were created by the researchers from the polarization of light.

A collaboration of researchers from Canada, Europe and the USA have experimentally produced Mobius strips from the polarization of light, confirming a theoretical prediction that it is possible for light's electromagnetic field to assume this peculiar shape.

Mobius strips are easy to create. Take a strip of paper, twist it once and join up the ends. That's it, you have created a Mobius strip: a three dimensional structure that has only one side. Millions of school children do exactly this in classrooms every year. But finding Mobius strips occurring naturally is another issue.

"This is one of the very few known examples of a Mobius structure appearing in nature," states Robert W. Boyd, professor of optics and physics at the University of Rochester and the Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa. Boyd is one of the senior authors of the paper describing this research, which is published online by Science this week.

Demonstrating that a Mobius strip can be made of polarization states of light is interesting not only for improving the fundamental understanding of optical polarization but also because it could be used to generate complex structures at micro and nanoscales.

Light is an electromagnetic wave, and as such it has an electromagnetic field. The direction in which the electric component of this field oscillates is commonly referred to as the light's polarization. Polarization, for example, is the key to understanding glare-reducing polarized sunglasses and making 3D cinema possible.

The polarization of sunlight beams is usually random, which means the orientation of the electric field is independent from one beam to another. But when light is reflected from many objects - for example water, glass, or a highway's surface - the reflected light becomes polarized in a specific direction, parallel to the surface that is reflecting the light.

Polarized sunglasses are able to block light polarized in that direction, thereby greatly reducing the glare but letting other light through unobstructed.

In their experiment, to produce these Mobius strips, the researchers use a specific, rather exotic, type of light beam: a tightly focused laser beam that they refer to as structured light. Structured light has a very specific polarization and intensity distribution in the light beam - and therefore the electromagnetic field oscillates differently for different parts of the beam.

It is not always at right angles to the direction the light is moving in, as would be the case in a standard laser beam. In this highly structured beam, there will be components of the electric field in all three dimensions. Moreover, different parts of the beam will have different electric field components in different directions.

To create the structured beam and measure its polarization, the researchers used a series of optical tools. The laser light is first passed through a q-plate - effectively a liquid crystal lens developed by Lorenzo Marrucci and Ebrahim Karimi in Naples. This creates the structured beam.

To image the polarization the researchers used a nanoparticle. This particle was scanned over the cross-section of the beam and the researchers observed the light it scattered. By determining how the light was scattered, and effectively using it as an interferometer, the polarization of the light beam at the focus is detected, and consequently the Mobius strips emerge. This procedure was developed by Gerd Leuchs and Peter Banzer in Erlangen.

The Mobius strips show how the electric field is oriented at each position on a circular path surrounding the axis of the laser beam. Depending on the particulars of the structure of laser beam, the researchers observe Mobius strips of polarization having 3/2 or 5/2 twists.

These strips demonstrate the rich structure that a light beam can possess at very small, subwavelength distance scales, Boyd explained. He added that, moreover, the measurement technique used here holds great promise for probing the nanostructure of other sorts of light beams.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Rochester
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Visualizing interacting electrons in a molecule
Espoo, Finland (SPX) Jan 28, 2015
Understanding this kind of electronic effects in organic molecules is crucial for their use in optoelectronic applications, for example in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and solar cells. In their article published in Nature Physics, the research team demonstrates measurements on the organic molecule cobalt phthalocyanine (CoPC) that can be e ... read more


ENERGY TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

ENERGY TECH
Helicopter Could be 'Scout' for Mars Rovers

Hilltop Panorama Marks Mars Rover's 11th Anniversary

Mysteries in Nili Fossae

NASA, Microsoft Collaboration Will Allow Scientists to 'Work on Mars'

ENERGY TECH
Sailing spacecraft LightSail to harness power of solar wind

Virgin Galactic Appoints Mark Stucky as Pilot

Singer Sarah Brightman in training for space tourist role

Stepping Stones to NASA's Human Missions Beyond

ENERGY TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

ENERGY TECH
NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Elon Musk says SpaceX using electric rockets is 'impossible' after 'Simpsons' episode

SES Entrusts Arianespace With SES-12

Google aboard as Musk's SpaceX gets $1 bn in funding

ENERGY TECH
Ancient star system has Earth-sized planets forming near start of universe

Gigantic ring system around J1407b much larger, heavier than Saturn's

New research re-creates planet formation in the lab

Planets outside our solar system more hospitable to life than thought

ENERGY TECH
Is glass a true solid?

Scientists 'bend' elastic waves with new metamaterials

Scientists 'bend' acoustic and elastic waves with new metamaterials

Planetary Society announces test flight for LightSail




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.