Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Gaia sunshield deployment test
by Staff Writers
Paris, France (ESA) Dec 07, 2011


Gaia Deployable Sunshield Assembly (DSA) during deployment testing at Astrium Toulouse. Since the DSA will operate in microgravity, it is not designed to support its own weight in the one-g environment at Earth's surface. During deployment testing, the DSA panels are attached to a system of support cables and counterweights that bears their weight, preventing damage and providing a realistic test environment. The flight model thermal tent is visible inside the deploying sunshield and the mechanically representative dummy payload can be seen through the aperture in the tent.

Deployment testing of the Gaia Flight Model Deployable Sunshield Assembly has been successfully completed in preparation for the spacecraft mechanical test campaign.

Gaia will perform micro-arcsecond astrometry of over one billion objects in the Milky Way and beyond. In order to achieve the required measurement precision, the spacecraft and its instrument payload must be shielded from direct sunlight and maintained at a stable, low temperature. Any thermal instability at the level of a few hundreds of K or more could affect the final accuracy of the measurements.

The thermal stability of the Gaia spacecraft will largely be determined by the Deployable Sunshield Assembly (DSA), which will protect Gaia and its instruments from illumination by the Sun. Once deployed, the sunshield will be ~10.2 m across and have an area of ~75 m2.

SENER (Spain) is responsible for the development and manufacture of the DSA. The design was validated by thermal vacuum and thermal balance testing of the Qualification Model (QM) at ESA's European Space Research and Technology Centre (ESTEC) in July 2009, and by further deployment testing of the QM in the thermal vacuum chamber at Intespace, Toulouse during August 2011.

The Flight Model (FM) DSA has already undergone two deployment tests, one at SENER upon completion of manufacturing and one in Astrium Toulouse following thermal cycling. During October 2011, the FM DSA was formally delivered to Astrium (France), the Prime Contractor for the spacecraft, and integrated with the FM Service Module and Thermal Tent and a mass-representative model of the payload module.

Once integrated, the first deployment test of the DSA mounted on the spacecraft took place in Astrium on 21 October. This test demonstrated correctness of alignment, confirmed the deployment functionality and verified the flatness of the deployed DSA. The spacecraft was then moved to Intespace in Toulouse for its mechanical test campaign.

How the Deployable Sunshield Assembly works
The DSA consists of 12 panels, each 0.8 metres wide and 3.3 metres long and comprising a carbon-fibre reinforced composite frame covered with two parallel blankets of Multi-Layer Insulation (MLI). The panels are stowed against the spacecraft during launch, secured in place by pyrotechnically releasable fixings referred to as pyronuts.

Gaia will operate in a Lissajous orbit around the second Lagrange point of the Sun-Earth system (L2). Once the Fregat upper stage of the Soyuz launcher has injected Gaia into its transfer orbit towards L2, the pyronuts will be fired to initiate DSA deployment.

As the 12 panels hinge away from the spacecraft, triangular sheets of MLI that were stowed, rolled between adjacent panels will unfurl to fill the gaps between the panels.

The deployment is actuated by preloaded springs that form part of the two hinges that attach each of the panels to the spacecraft body. All 12 panel frames are connected via flexible couplings that make up a single shaft loop to ensure synchronous deployment.

The rate of deployment is controlled by two stepper motors, which can provide additional outward torque if required, or can act against the springs to maintain a constant rate of movement and ensure a smooth deployment.

Deployment testing
Since the DSA will operate in microgravity, it is not designed to support its own weight in the one-g environment at Earth's surface. During deployment testing, the DSA panels are attached to a system of support cables and counterweights that bears their weight, preventing damage and providing a realistic test environment.

The mechanical shock induced by the firing of the pyrotechnically releasable fixings at the start of deployment is among the most severe that the DSA will experience in service. To qualify it to withstand this shock, live pyrotechnics were used during the deployment test. Each pyro fixing has two redundant initiators and charges; only one charge in each of the pyronuts was fired during the test.

Next steps
Following completion of the deployment test, the spacecraft is undergoing acoustic and sine vibration testing to qualify it for the noise and mechanical environments specified by the launch authority. In preparation for these tests, the tanks in the FM Service Module have been filled with simulated propellant and later will be subjected to leak testing.

The spacecraft will then be moved back to Astrium's premises in Toulouse, where a further DSA deployment test will be performed to ensure that full functionality has been maintained after simulation of the launch environment.

The other major mechanical shock that the spacecraft will experience, which will be induced by the release of the clamp band holding the spacecraft to the launch adapter, will be simulated later in the test campaign.

About Gaia
Gaia will create a three-dimensional map of the Milky Way, in the process revealing information about its composition, formation and evolution. The mission will perform micro-arcsecond astrometry to pinpoint the position and motion of about one billion stars in our Galaxy and Local Group with unprecedented precision.

Radial velocity measurements will be determined for a significant fraction of this sample. Gaia is scheduled to launch in 2013 for a nominal five-year mission, with a possible one-year extension.

The spacecraft will operate in a Lissajous orbit around the second Lagrange point of the Sun-Earth system (L2). This location in space offers a very stable thermal environment, very high observing efficiency (since the Sun, Earth and Moon are all behind the instrument field-of-view) and a low radiation environment. Uninterrupted mapping of the sky will take place during the operational mission phase.

The Prime Contractor for Gaia is Astrium SAS, based in Toulouse, France.

.


Related Links
Gaia Mission at ESA
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
ATK Awarded $20 Million UltraFlex Solar Array Contract from Orbital
Arlington, VA (SPX) Dec 02, 2011
ATK was awarded a $20 million contract by Orbital Sciences to provide its UltraFlex solar arrays to power Orbital's enhanced Cygnus cargo logistics space vehicle, which is being utilized under NASA's Commercial Resupply System contract. The disk-shaped UltraFlex solar arrays measure more than 11 feet in diameter and are made of ultra-lightweight materials that provide high strength and sti ... read more


TECH SPACE
Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

Flying over the three-dimensional Moon

LRO Camera Team Releases High Resolution Global Topographic Map of Moon

TECH SPACE
New Tool for Touring Mars Using Detailed Images

Mars Opportunity Rover Finds Rich Vein Of Gypsum Water Deposits

Opportunity Spent Holiday at 'Turkey Haven'

SAM I Am

TECH SPACE
Ball Aerospace Delivers Orion Phased Array Antenna EDUs

Voyager Hits New Region at Solar System Edge

Ugandan works on space project from mother's backyard

Nanosail-D Sails Home

TECH SPACE
Philatelic Cover Reveals the secret names of second Taikonaut team

First Crew for Tiangong

China post office offers letters from space

15 patents granted for Chinese space docking technology

TECH SPACE
Astronaut TJ Creamer Learns Space Station Science From the Ground Up

FLEX-ible Insight Into Flame Behavior

Growing Knowledge in Space

MDA to extend its services to support Canadarm2 and Dextre for ISS

TECH SPACE
Boeing Receives USAF Reusable Booster System Contract

Soyuz' second mission from French Guiana is readied at the Spaceport

On the record with Arianespace

United Launch Alliance Marks Five Years of Mission Success With 56 Launches in 60 Months

TECH SPACE
Giant Super-Earths Made Of Diamond Are Possible

New Planet Kepler-21b discovery a partnership of both space and ground-based observations

Astronomers Find Goldilocks Planet and Others

The Habitable Exoplanets Catalog, a new online database of habitable worlds

TECH SPACE
Gaia sunshield deployment test

Cassidian debuts new radar product

Australia lifts Samsung ban in defeat for Apple

US director makes first smartphone movie




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement