Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
From the Amazon rainforest to human body cells: Quantifying stability
by Staff Writers
Potsdam, Germany (SPX) Jan 11, 2013


File image.

As they typically result from severe external perturbations, it is of vital interest how stable the most desirable state is. Surprisingly, this basic question has so far received little attention. Now scientists of the Potsdam Institute for Climate Impact Research (PIK), in a paper published in Nature Physics, propose a new concept for quantifying stability.

"Up to now, science was able to say if a complex system is stable or not, but it wasn't able to properly say how stable it is," says Peter J. Menck, lead author of the paper. The proposed concept is the first to fill this gap.

"We conceive a system's alternative states as points in a mountainous landscape with steep rocks and deep valleys," explains Menck. "In the sinks between the peaks, a system comes to rest like a rolling ball would. Now the likelihood that the system returns to a specific sink after suffering a severe blow strongly depends on how big the surrounding valley is."

In the high-dimensional systems Menck and his colleagues study, the equivalent of the valley is called the basin of attraction. The basin's volume is the measure the authors suggest to use for the quantification of stability.

Getting the actual data still is a challenge
The authors envision the new concept to become a powerful tool for complex systems studies, including the assessment of climatic tipping elements like the Amazon rainforest.

Under unabated global warming, this ecosystem might change from its present fertile forest state to a much drier savanna state. Such a transition would destroy one of the planet's most important CO2 sinks, thus contributing to further climate change.

"Amazonian bistability arises from a positive feedback: Deep-rooting trees take up water and transpire it to the atmosphere" Menck says. Forest cover in the region increases overall rainfall and thereby improves its own growing conditions. If the forest cover gets pushed below a certain threshold, this mechanism doesn't work any more - the rainforest would die.

The "basin stability concept" is apt for quantifying this risk. However, it is critical to actually do this from measured data. "Other researchers recently have collected the characteristics in terms of precipitation, temperature, soil of rainforests and savannas under defined climatological conditions," Menck says.

Still, the assessment is extremely challenging as the tipping of a forest is a rare event, so observation data is scarce. In contrast, observation data of human cells changing from a healthy state to cancer can be abundant. "So medical researchers told us that our concept could be quite helpful in better assessing the risk of sane cells to turning sick when disturbed by specific exogenous factors."

"Simple yet compelling - that's the way fundamental physics looks like"

Power grids have to function in good synchronization to assure that lights can be switched on everywhere anytime. Previous theory suggested that this should most easily be achieved if power grids had what researchers call a random structure, which in fact would yield many short-cuts between distant nodes.

Yet in reality, grids look far more regular. Applying the basin stability concept shows why that is: In more regular grids, the desired synchronous state possesses a far bigger 'basin', hence is much more stable against perturbations.

"The basin stability's applicability to high-dimensional systems allowed us to solve a puzzle that has long haunted complex network science," says Jurgen Kurths, a co-author of the paper and co-chair of PIK's research domain 'Transdisciplinary concepts and methods'.

"Our new nonlinear approach jumps from a local to a whole system analysis, thus complementing previous research mostly based on linearization. This new concept is simple, yet compelling - that's the way fundamental physics looks like."

Menck, P.J., Heitzig, J., Marwan, N., Kurths, J. (2013): How basin stability complements the linear-stability paradigm. Nature Physics (advance online publication) [doi:10.1038/NPHYS2516]

.


Related Links
Potsdam Institute for Climate Impact Research
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
A temperature below absolute zero
Garching, Germany (SPX) Jan 08, 2013
What is normal to most people in winter has so far been impossible in physics: a minus temperature. On the Celsius scale minus temperatures are only surprising in summer. On the absolute temperature scale, which is used by physicists and is also called the Kelvin scale, it is not possible to go below zero - at least not in the sense of getting colder than zero kelvin. According to the phys ... read more


TIME AND SPACE
Mission would drag asteroid to the moon

Russia designs manned lunar spacecraft

GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

TIME AND SPACE
Mars500 project - salt balance of the Mars 'astronauts'

Simulated mission to Mars reveals critical data about sleep needs for astronauts

NASA's Big Mars Rover Makes First Use Of Its Brush

Lockheed Martin Delivered Core Structure For First GOES-R Satellite

TIME AND SPACE
AXE to Send 22 Guys to Space with New Apollo Campaign

IBM tops as tech titans scramble for US patents

Chinese tech firms pump up volume at CES

High fashion, high tech intersect at CES confab

TIME AND SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

TIME AND SPACE
Crew Wraps Up Robonaut Testing

Station Crew Ringing in New Year

Expedition 34 Ready to Ring in New Year

New ISS crew docked at Space Station

TIME AND SPACE
Arianespace's industry leadership will continue with 12 launcher family missions planned in 2013

Arianespace addresses The Insurance Institute of London

Cargo loading underway with the next ATV resupply spacecraft to be launched by Ariane 5

SpaceX sets March 1 for launch to ISS

TIME AND SPACE
Earth-size planets common in galaxy

NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut B

NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega

Kepler Gets a Little Help From Its Friends

TIME AND SPACE
How the kilogram has put on weight

Japan to survey Pacific seabed for rare earth

3D printing creates 'virtual' fossil

LEON: the space chip that Europe built




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement