Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Follow the radio waves to exomoons
by Staff Writers
Arlington TX (SPX) Aug 13, 2014


Schematic of a plasma torus around an exoplanet, which is created by the ions injected from an exomoon's ionosphere into the planet's magnetosphere.

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The University of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.

Their recent findings, published in The Astrophysical Journal, describe radio wave emissions that result from the interaction between Jupiter's magnetic field and its moon Io. They suggest using detailed calculations about the Jupiter/Io dynamic to look for radio emissions that could indicate moons orbiting an exoplanet.

"This is a new way of looking at these things," said Zdzislaw Musielak, professor of physics in the UT Arlington College of Science and co-author of the new paper.

"We said, 'What if this mechanism happens outside of our solar system?' Then, we did the calculations and they show that actually there are some star systems that if they have moons, it could be discovered in this way." Joaquin Noyola, a Ph.D. graduate student in Musielak's research group, is lead author on the new paper and Suman Satyal, a Ph.D. graduate student in the same group, is another co-author.

It is titled "Detection of Exomoons Through Observation of Radio Emissions." The idea of life thriving on a moon has inspired science fiction, such as Star Wars' furry Ewoks. Scientists even think some moons in our own Solar System - Saturn's Enceladus and Jupiter's Europa - are good candidates for supporting life based on their atmospheric composition, potential for water and distance from the sun.

The difficulty comes in trying to spot an exomoon using existing methods, Musielak said. NASA's Kepler telescope, for example, measures changes in brightness from a star to identify transits, or passes, by an orbiting planet. Reliably isolating whether a moon is part of that transit hasn't been possible, so far.

The UT Arlington team builds on earlier theories about using radio wave observations to discover exoplanets, but applies it in a new way. Their focus is on Io and its ionosphere, a charged upper atmosphere that is likely created by the moon's extremely active volcanoes. During its orbit, Io's ionosphere interacts with Jupiter's magnetosphere, a layer of charged plasma that protects the planet from radiation, to create a frictional current that causes radio wave emissions.

These are called "Io-controlled decametric emissions" and the researchers believe finding similar emissions near known exoplanets could be key to predicting where other moons exist. Noyola said it is important to note when modeling the Io example to other planet/moon pairs that other moons do not necessarily have to have the volcanic activity of Io to have an ionosphere.

"Larger moons - such as Saturn's largest moon, Titan - can sustain a thick atmosphere, and that could also mean they have an ionosphere. So volcanic activity isn't a requirement," Noyola said.

The paper also addresses Alfven waves that are produced by the Io and Jupiter magnetosphere interaction and says those waves also could be used to spot exomoons in similar situations. Alfven waves are the rippling of the plasma in a magnetic field, first described by Hannes Alfven in the early 1940s.

In their paper, the UT Arlington team even pinpointed two exoplanets where they are "cautiously optimistic" that the observational community could apply the study's calculations to search for exomoons the size of our moon with future, more sensitive radio telescopes - Gliese 876b, which is about 15 light years way, and Epsilon Eridani b, which is about 10.5 light years away. Current telescopes - such as the National Science Foundation-supported Long Wavelength Array - could be used to detect exomoons in closer planetary systems, with the bigger moons holding better the possibilities of detection, Satyal said.

"Most of the detected exoplanets are gas giants, many of which are in the habitable zone," he said. "These gas giants cannot support life, but it is believed that the exomoons orbiting these planets could still be habitable."

.


Related Links
University of Texas at Arlington
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Red Dwarf Stars Might Be Best Places to Discover Alien Life
Moffet Field CA (NASA) Aug 12, 2014
Red dwarfs are the most common type of star in the universe, and nearly every one of these stars may have a planet located in its habitable zone where life has the best chance of existing, a new study concludes. This discovery may increase the chances that alien life could exist elsewhere in the cosmos, researchers say. They detailed their findings in the International Journal of Astrobiol ... read more


EXO LIFE
China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

Manned Moon Mission to Cost Russia $2.8 Bln

EXO LIFE
Opportunity Heads to 'Marathon Valley'

NASA Mars Curiosity Rover: Two Years and Counting on Red Planet

Robotic Rock Climbers Could Uncover Clues to Mars' Past

Russia To Construct Landing Pad For ExoMars Mission

EXO LIFE
Study Compiles Data on Problem of Sleep Deprivation in Astronauts

Aerojet Completes CST-100 Work for Commercial Crew Work

Introducing this year's underground astronauts

American Spaceports

EXO LIFE
More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

EXO LIFE
ATV completes final automated docking

NASA's Space Station Fix-It Demo for Satellites Gets Hardware for 2.0 Update

ESA's cargo vessel ready for space delivery

Robonaut Upgrades, Spacewalk Preps and Cargo Ops for ISS Crew

EXO LIFE
Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

ATK Passes Critical Design Review for NASA's Space Launch System Booster

Russia to Decide on Future of Sea Launch Project by End of 2014

SpaceX launches AsiaSat8 into orbit via Falcon 9 rocket

EXO LIFE
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

EXO LIFE
Learning from origami to design new materials

BAE Systems touts its Artisan radar system

Association of satellite operators joins program for space safety

USN Moderates CubeSat RF Communications Standards Meeting




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.