Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
Five years of soil moisture, ocean salinity and beyond
by Staff Writers
Paris (ESA) Nov 05, 2014


The Soil Moisture and Ocean Salinity (SMOS) mission makes global observations of soil moisture over Earth's landmasses and salinity over the oceans. Variations in soil moisture and ocean salinity are a consequence of the continuous exchange of water between the oceans, the atmosphere and the land - Earth's water cycle. Image courtesy ESA/AOES Medialab.

ESA's SMOS satellite has clocked up more than one billion kilometers orbiting Earth to improve our understanding of our planet's water cycle. Marking its fifth birthday, all the data collected over land and ocean have been drawn together to show how moisture in the soil and salinity in the ocean change over the year.

The Earth Explorer SMOS mission was launched on 2 November 2009 from Plesetsk in Russia.

Carrying a novel sensor, it captures images of 'brightness temperature'. These images correspond to microwave radiation emitted from Earth's surface and can be related to soil moisture and ocean salinity - two key variables in Earth's water cycle.

The animation above uses five years of SMOS data to show how, on average, moisture in the soil changes with the seasons around the world.

It illustrates how change is more pronounced at higher latitudes, but monsoon dynamics in the Indian subcontinent are also clearly visible. The 'Sahel transition' region in Africa is well depicted and seasonal flooding in regions such as La Plata in Argentina and the Orinoco Basin in Veneuzela can also be seen.

Over oceans, measurements from SMOS, the longest continuous record from space, show monthly differences in sea-surface salinity with respect to the average salinity - and show large deviations in the tropical Pacific Ocean and in the Indian Ocean.

This is linked to the occurrence of La Nina, which is associated with cooler than normal sea-surface temperatures in the eastern Pacific, and the Indian Ocean Dipole, which describes sea-surface temperature differences between the eastern and western equatorial Indian Ocean.

While these results are of interest to understanding aspects of the water cycle, information from SMOS is being used for a number of practical applications.

In fact, 18 TB of SMOS data are distributed every year, of which around 13 TB are used by scientists and around 5 TB for near-realtime applications by operational users.

For example, integrating these accurate near-realtime observations into the European Centre for Medium-Range Weather Forecasts' (ECMWF) system is helping to improve air temperature and humidity forecasts near the surface. In addition, the inclusion of SMOS observations are helping to improve the prediction of rain.

This is particularly true for the southern hemisphere, where the number of conventional in situ observations is comparably low. In fact, ECMWF is processing and quality-controlling SMOS data operationally to realise some 600 images every day, totalling more than one million figures since the satellite was launched.

Applications include forecasting river runoff, monitoring drought and forecasting crop yield. Again, the novel satellite measurements are most beneficial over regions lacking dense on-ground observation networks.

This multitalented mission also provides information to measure thin ice floating in the polar seas accurately enough for forecasting and ship routing.

While it wasn't designed to measure ice, radiation emitted by the ice allows SMOS to 'see' through the surface, yielding ice-thickness measurements down to 50 cm - mainly the thinner younger ice at the edge of the Arctic Ocean.

Sea ice that is less than 50 cm thick is particularly important for weather and climate because it controls the exchange of heat and water between the ocean and atmosphere.

The animation showing a map average brightness tempertures in June-August from SMOS offers a glimpse as to how the mission can be used to detect thin sea ice and the freezing and thawing of ground.

With a history of very few technical issues and having demonstrated its value to science and its versatility as well as new opportunities for working in conjunction with NASA's upcoming Soil Moisture Active Passive mission, SMOS will remain operational until at least 2017 - although there is actually enough fuel left for another 120 years!

Susanne Mecklenburg, ESA's SMOS Mission Manager, said, "The collaboration between ESA and CNES, who jointly operate the mission, has been excellent.

"Extending the mission until 2017 not only demonstrates how the the scientific results so far have been appreciated, but also the excellent technical status of the mission."

Steps have already started to look at how the potential next generation of missions could make could advance oceanography, hydrology and land surface studies.

The international salinity community will meet shortly to discuss developments in ocean salinity mapping after five years of SMOS measurements.

In addition, the 2nd SMOS conference will be held in Madrid next May to provide the science community with an update on mission developments and offer a forum for discussion.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESA SMOS
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
Goodbye to Rainy Days for US, Japan's First Rain Radar in Space
Greenbelt MD (SPX) Nov 05, 2014
After 17 years of groundbreaking 3-D images of rain and storms, the joint NASA and Japan Aerospace Exploration Agency Tropical Rainfall Measuring Mission (TRMM) will come to an end next year. NASA predicts that science operations will cease in or about April 2015, based on the most recent analysis by mission operations at NASA's Goddard Space Flight Center, Greenbelt, Maryland. On July 8, ... read more


EARTH OBSERVATION
China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

New lunar mission to test Chang'e-5 technology

EARTH OBSERVATION
NASA's Curiosity Mars Rover Finds Mineral Match

MAVEN Continues Mars Exploration Begun 50 Years Ago by Mariner 4

You can't get to Mars, but your name can

A One Way Trip to Mars

EARTH OBSERVATION
Synthetic Biology for Space Exploration

Orion Takes Big Step Before Moving to the Launch Pad

NASA Program Enhances Climate Resilience at Agency Facilities

SpaceShipTwo Manufacturer May Face Setback After Crash in California

EARTH OBSERVATION
China's Lunar Orbiter Makes Safe Landing, First in 40 Years

China's First Lunar Return Mission A Stunning Success

China completes first mission to moon and back

Wenchang to launch China's next space station

EARTH OBSERVATION
ISS Agency Heads Issue Joint Statement

Station Trio Prepares for Departure amid Ongoing Science

Students text International Space Station using a 20-foot antenna

Student Experiments Lost in Antares Rocket Explosion

EARTH OBSERVATION
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Spaceflight partners with JAMSS to loft 8 CubeSats on JAXA mission

Arianespace signs contract with ELV for ten Vega launchers

NASA Completes Initial Assessment after Orbital Launch Mishap

EARTH OBSERVATION
Peering into Planetary Atmospheres

VLTI detects exozodiacal light

Yale finds a planet that won't stick to a schedule

In a first, astronomers map comets around another star

EARTH OBSERVATION
ORNL materials researchers get first look at atom-thin boundaries

From earphones to jet engines, 3D printing takes off

ESA space ferry moves ISS to avoid debris

EIAST and AUS launch UAE's first CubeSat Mission Nayif-1




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.