Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
First Of Missing Primitive Stars Discovered
by Staff Writers
Boston MA (SPX) Mar 05, 2010


Dwarf galaxy Sculptor.

Astronomers have discovered a relic from the early universe - a star that may have been among the second generation of stars to form after the Big Bang. Located in the dwarf galaxy Sculptor some 290,000 light-years away, the star has a remarkably similar chemical make-up to the Milky Way's oldest stars.

Its presence supports the theory that our galaxy underwent a "cannibal" phase, growing to its current size by swallowing dwarf galaxies and other galactic building blocks.

"This star likely is almost as old as the universe itself," said astronomer Anna Frebel of the Harvard-Smithsonian Center for Astrophysics, lead author of the Nature paper reporting the finding.

Dwarf galaxies are small galaxies with just a few billion stars, compared to hundreds of billions in the Milky Way. In the "bottom-up model" of galaxy formation, large galaxies attained their size over billions of years by absorbing their smaller neighbors.

"If you watched a time-lapse movie of our galaxy, you would see a swarm of dwarf galaxies buzzing around it like bees around a beehive," explained Frebel. "Over time, those galaxies smashed together and mingled their stars to make one large galaxy - the Milky Way."

If dwarf galaxies are indeed the building blocks of larger galaxies, then the same kinds of stars should be found in both kinds of galaxies, especially in the case of old, "metal-poor" stars.

To astronomers, "metals" are chemical elements heavier than hydrogen or helium. Because they are products of stellar evolution, metals were rare in the early Universe, and so old stars tend to be metal-poor.

Old stars in the Milky Way's halo can be extremely metal-poor, with metal abundances 100,000 times poorer than in the Sun, which is a typical younger, metal-rich star. Surveys over the past decade have failed to turn up any such extremely metal-poor stars in dwarf galaxies, however.

"The Milky Way seemed to have stars that were much more primitive than any of the stars in any of the dwarf galaxies," says co-author Josh Simon of the Observatories of the Carnegie Institution. "If dwarf galaxies were the original components of the Milky Way, then it's hard to understand why they wouldn't have similar stars."

The team suspected that the methods used to find metal-poor stars in dwarf galaxies were biased in a way that caused the surveys to miss the most metal-poor stars. Team member Evan Kirby, a Caltech astronomer, developed a method to estimate the metal abundances of large numbers of stars at a time, making it possible to efficiently search for the most metal-poor stars in dwarf galaxies.

"This was harder than finding a needle in a haystack. We needed to find a needle in a stack of needles," said Kirby. "We sorted through hundreds of candidates to find our target."

Among stars he found in the Sculptor dwarf galaxy was one faint, 18th-magnitude speck designated S1020549. Spectroscopic measurements of the star's light with Carnegie's Magellan-Clay telescope in Las Campanas, Chile, determined it to have a metal abundance 6,000 times lower than that of the Sun; this is five times lower than any other star found so far in a dwarf galaxy.

The researchers measured S1020549's total metal abundance from elements such as magnesium, calcium, titanium, and iron. The overall abundance pattern resembles those of old Milky Way stars, lending the first observational support to the idea that these galactic stars originally formed in dwarf galaxies.

The researchers expect that further searches will discover additional metal-poor stars in dwarf galaxies, although the distance and faintness of the stars pose a challenge for current optical telescopes. The next generation of extremely large optical telescopes, such as the proposed 24.5-meter Giant Magellan Telescope, equipped with high-resolution spectrographs, will open up a new window for studying the growth of galaxies through the chemistries of their stars.

In the meantime, says Simon, the extremely low metal abundance in S1020549 study marks a significant step towards understanding how our galaxy was assembled. "The original idea that the halo of the Milky Way was formed by destroying a lot of dwarf galaxies does indeed appear to be correct."

.


Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Massive Stars' Magnetically Controlled Diets
Bonn, Germany (SPX) Feb 19, 2010
A team of astronomers, led by Dr. Wouter Vlemmings at Bonn University, has used the MERLIN radio telescope network centered on the Jodrell Bank Observatory to show that magnetic fields play an important role during the birth of massive stars. Magnetic fields are already known to strongly influence the formation of lower-mass stars like our Sun. This new study reveals that the way in which ... read more


STELLAR CHEMISTRY
Deep Crater Exposes Hidden Ancient Moon

NASA radar finds ice on moon's north pole

NASA Radar Finds Ice Deposits At Moon's North Pole

Into A Volcano To Test Suitcase-Sized Science Lab

STELLAR CHEMISTRY
Spirit Set For Another Cold Quiet Winter

NASA Mars Orbiter Speeds Past Data Milestone

Radar Map Of Buried Martian Ice Adds To Climate Record

A Glow In The Martian Night

STELLAR CHEMISTRY
Popular Space Artist Had Extensive Ties To UA

LockMart Orion Team Fabricates World's Largest Heat Shield Structure

NASA Increases Support Contract To Mid-Atlantic Regional Spaceport

Northrop Grumman Foundation Weightless Flights Of Discovery

STELLAR CHEMISTRY
Two Crews For Tiangong

China Developing Technologies For Own Space Program

China announces second lunar probe

China's space station plan delayed for 'technical reasons'

STELLAR CHEMISTRY
Orbital Sciences Selects GS Yuasa to Power Cargo Transport Missions To ISS

Canada to boost space research

Space agencies find new use for 'Leonardo'

Endeavour Home After Completing A Special Delivery To ISS

STELLAR CHEMISTRY
NASA's high-tech GOES-P weather satellite lifts off

Kazakhstan Says Russian Proton launches To Continue

Arianespace At World Satellite Risk Forum 2010

Student Rocket REXUS 7 Launched

STELLAR CHEMISTRY
How To Hunt For Exoplanets

Watching A Planetary Death March

Seeing ExoPlanet Atmospheres From The Ground

New Technique For Detecting Earth-Like Planets

STELLAR CHEMISTRY
TerraSAR-X Images International Space Station

'Avatar' inspires a high-tech fair in glorious 3D

USAF Eyes Mini-Thrusters For Use In Satellite Propulsion

World's top high-tech fair goes 3D




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement