Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TIME AND SPACE
First Observation Of T2K Neutrino Event At Super-Kamiokande
by Staff Writers
Kamiokande, Japan (SPX) Mar 01, 2010


Interacting only weakly with matter, neutrinos can traverse the entire Earth with vastly less loss of intensity than light passing through a window. The very weakness of their interactions allows physicists to make what should be very accurate predictions of their behavior.

UK particle physicists working on the multinational T2K project, which is designed to detect some of the least understood particles in the universe, have helped track their first neutrino which has travelled 185 miles (295 km) under Japan.

The detection of the neutrino as it passed from the East to the West of the country means the study of the mysterious phenomenon of neutrino oscillations, which it is hoped will shed more light on the role of the neutrino in the early universe, can now begin. It could even help answer questions about why there is more matter than anti-matter in the universe.

T2K (Tokai-to-Kamioka), an international experiment led by Japan and part-funded by the UK's Science and Technology Facilities Council (STFC), was built to help us understand with unprecedented precision more about the strange properties of the puzzling neutrino.

"Neutrinos are the elusive ghosts of particle physics," T2K spokesperson Takashi Kobayashi said. "They come in three types, called electron neutrinos, muon neutrinos, and tau neutrinos, which used to be thought to be unchanging. This is a big step forward, we've been working hard for more than 10 years to make this happen."

T2K's newly constructed neutrino beamline at the J-PARC facility in Tokai village (north of Tokyo) will now start to try to take measurements of the so-far unobserved neutrino oscillation which would cause a small fraction of the muon neutrinos produced there to become electron neutrinos by the time they reach the giant Super-Kamiokande underground detector on the other side of Japan.

"Observing the new type of oscillation would open up the prospect of comparing the oscillations of neutrinos and anti-neutrinos, which many theorists believe may be related to one of the great mysteries in fundamental physics - why is there more matter than anti-matter in the universe?"

Said Professor Dave Wark of Imperial College London and STFC's Rutherford Appleton Laboratory, who is the International Co-Spokesperson of the T2K experiment: "The observation of this first neutrino means that the hunt has just begun!"

Interacting only weakly with matter, neutrinos can traverse the entire Earth with vastly less loss of intensity than light passing through a window. The very weakness of their interactions allows physicists to make what should be very accurate predictions of their behavior.

"The first measurements of the flux of neutrinos coming from the thermonuclear reactions which power our Sun came as something of a shock because they were far lower than predicted", said Professor Wark.

A second anomaly was then clearly demonstrated by Super-Kamiokande, when it showed that the flux of different types of neutrino generated within our atmosphere by cosmic ray interactions was different depending on whether the neutrinos were coming from above or below (which should not have been possible given our understanding of particle physics).

Other experiments, such as KamLAND (also performed at Kamioka), the Canadian-American-UK SNO experiment, and the STFC-supported MINOS experiment, have conclusively demonstrated that these anomalies are caused by neutrino oscillations, whereby one type of neutrino turns into another.

UK scientists from 9 institutions, who are among the 508 physicists from 12 countries involved, have made a significant contribution to the experiment, producing vital hardware for both the accelerator and detectors. The UK is also playing a leading role in the analysis software for the experiment and will be fully involved in using the data to explore the properties of neutrinos.

Professor John Womersley, Director, Science Programmes at STFC said; "STFC is proud to be funding an experiment that could make such a significant contribution to our understanding of these elusive particles and indeed to what we know about the formation of the universe".

The first initial science results from this experiment are expected within a few months, but it will be several years before any definitive answers are found.

.


Related Links
T2K project
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
World's most powerful atom smasher restarts: CERN
Geneva (AFP) Feb 28, 2010
Scientists have restarted the world's most powerful atom-smasher overnight, the European Organisation for Nuclear Research (CERN) said Sunday, as they launch a new bid to uncover the secrets of the universe. "The LHC is on its way again. First beam of 2010 circulated in each direction by 04.10 CET (0310 GMT)," said CERN in a tweet on its website on Sunday. The 3.9 billion euro (5.6 billi ... read more


TIME AND SPACE
NASA radar finds ice on moon's north pole

NASA Radar Finds Ice Deposits At Moon's North Pole

Into A Volcano To Test Suitcase-Sized Science Lab

US lunar pull-out leaves China shooting for moon

TIME AND SPACE
Mars Odyssey Still Hears Nothing From Phoenix

Investigating Material Ejected From Young Crater

Spirit In Energy Saving Mode

Mars Express Heading For Closest Flyby Of Phobos

TIME AND SPACE
LockMart Orion Team Fabricates World's Largest Heat Shield Structure

NASA Increases Support Contract To Mid-Atlantic Regional Spaceport

Northrop Grumman Foundation Weightless Flights Of Discovery

SwRI Announces Pioneering Program To Fly Next-Gen Suborbital Experiments With Crew

TIME AND SPACE
UK's First China Space Race Exhibition Launched

No Spacewalk From Tiangong-1

China's Mystery Spacelab

China launches orbiter for navigation system: state media

TIME AND SPACE
Endeavour Home After Completing A Special Delivery To ISS

Endeavour Crew Delivered Last Major US Portion Of ISS

Endeavour astronauts prepare to unveil room with cosmic view

Astronauts Move Cupola

TIME AND SPACE
OHO-1 Satellite To Be Launched By Arianespace

Eutelsat's W3B On Fast Track For Ariane 5 Launch

French Guiana Welcomes The Second Passenger For Ariane 5's Upcoming Mission

Dispenser For Globalstar Constellation Declared Flight Worthy

TIME AND SPACE
Watching A Planetary Death March

Seeing ExoPlanet Atmospheres From The Ground

New Technique For Detecting Earth-Like Planets

New technique helps search for another Earth

TIME AND SPACE
SES WORLD SKIES To Host Extensive 3D TV Tests

Satellites, Rockets And More

Teens glued to TV, games screens less close to family: study

3D TV To Showcase At CeBit 2010




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement