Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Findings Raise New Questions About Dark Matter
by Staff Writers
College Park MD (SPX) Feb 24, 2011


The star dominated spiral galaxy UGC 2885. Image by Zagursky and McGaugh.

Recent data for gas rich galaxies precisely match predictions of a modified theory of gravity know as MOND according to a new analysis by University of Maryland Astronomy Professor Stacy McGaugh. This - the latest of several successful MOND predictions - raises new questions about accuracy of the reigning cosmological model of the universe, writes McGaugh in a paper to be published in March in Physical Review Letters.

Modern cosmology says that for the universe to behave as it does, the mass-energy of the universe must be dominated by dark matter and dark energy. However, direct evidence for the existence of these invisible components remains lacking.

An alternate, though unpopular, possibility is that the current theory of gravity does not suffice to describe the dynamics of cosmic systems.

A few theories that would modify our understanding of gravity have been proposed. One of these is Modified Newtonian Dynamics (MOND), which was hypothesized in 1983 by Moti Milgrom a physicist at the Weizmann Institute of Science in Rehovot, Israel.

One of MOND's predictions specifies the relative relationship between the mass of any galaxy and its flat rotation velocity. However, uncertainties in the estimates of masses of stars in star-dominated spiral galaxies (such as our own Milky Way) previously had precluded a definitive test.

To avoid this problem, McGaugh examined gas rich galaxies, which have relatively fewer stars and a preponderance of mass in the form of interstellar gas.

"We understand the physics of the absorption and release of energy by atoms in the interstellar gas, such that counting photons is LIKE counting atoms. This gives us an accurate estimate of the mass of such galaxies," McGaugh said.

Using recently published work that he and other scientists had done to determine both the mass and flat rotation velocity of many gas rich galaxies, McGaugh compiled a sample of 47 of these and compared each galaxy's mass AND rotation velocity with the relationship expected by MOND. All 47 galaxies fell on or very close to the MOND prediction. No dark matter model performed as well.

"I find it remarkable that the prediction made by Milgrom over a quarter century ago performs so well in matching these findings for gas rich galaxies," McGaugh said. "

MOND vs. Dark Matter - Dark Energy

Almost everyone agrees that on scales of large galaxy clusters and up, the Universe is well described by dark matter - dark energy theory. However, according to McGaugh this cosmology does not account well for what happens at the scales of galaxies and smaller.

"MOND is just the opposite," he said. "It accounts well for the 'small' scale of individual galaxies, but MOND doesn't tell you much about the larger universe.

Of course, McGaugh said, one can start from the assumption of dark matter and adjust its models for smaller scales until it fits the current finding. "This is not as impressive as making a prediction ahead of [new findings], especially since we can't see dark matter. We can make any adjustment we need."

This is rather like fitting planetary orbits with epicycles," he said. Epicycles were erroneously used by the ancient Greek scientist Ptolemy to explain observed planetary motions within the context of a theory for the universe that placed the earth in its center.

"If we're right about dark matter, why does MOND work at all?" asks McGaugh. "Ultimately, the correct theory - be it dark matter or a modification of gravity - needs to explain this."

.


Related Links
Dark energy and dark matter at NASA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Super-Sharp Radio Eye Remeasuring the Universe
Washington DC (SPX) Feb 22, 2011
Using the super-sharp radio "vision" of astronomy's most precise telescope, scientists have extended a directly-measured "yardstick" three times farther into the cosmos than ever before, an achievement with important implications for numerous areas of astrophysics, including determining the nature of Dark Energy, which constitutes 70 percent of the Universe. The continent-wide Very Long Ba ... read more


STELLAR CHEMISTRY
Venus And Crescent Moon Pair Up At Dawn

84 Student Teams Set to Roll At 18th Annual NASA Great Moonbuggy Race

Google Lunar X Prize Roster Reaches 29 Teams

Waiter, There's Metal In My Moon Water

STELLAR CHEMISTRY
Advanced NASA Instrument Gets Close-up On Mars Rocks

Good Health Report After Hiatus In Communications

Experiment volunteers take 2nd 'walk on Mars'

Walking On Mars

STELLAR CHEMISTRY
Sotheby's To Auction Soviet Space Capsule

Watch Out Virgin Galactic and Space Adventures Here Comes The Lynx

NASA Awards SAIC $62 Million Information Technology Contract Extension

Future Of Space Tourism, Research Will Be Focus Of Conference

STELLAR CHEMISTRY
China Mars probe set for November launch

Shenzhou 8 Mission Could Top Three Weeks

U.S. wary of China space weapons

Slow progress in U.S.-China space efforts

STELLAR CHEMISTRY
Crew Prepares For ATV-2 And Shuttle Discovery

European freighter docks with space station

Olympic Flame May Be Sent To ISS

ESA Astronaut Luca Parmitano Assigned To 2013 Space Station Mission

STELLAR CHEMISTRY
Successful Launch Of REXUS 9

24 hour delay for launch of NASA satellite

SpaceX to focus on astronaut capsule

ILS Appoints Vice President Of Sales Marketing And Communications

STELLAR CHEMISTRY
'Missing' element gives planet birth clues

'Wandering' planets may have water, life

Back To The Roots Of The Solar System

Kepler Triples ExoPlanet Count As Search For Biosphere 2 Intensifies

STELLAR CHEMISTRY
Apple MacBooks get speedier with Intel technology

Plants That Can Move Inspire New Adaptive Structures

Out Of Thin Air

NASA Mission to Tote CU Instrument And Student Satellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement