Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Field-emission plug-and-play solution for microwave electron guns
by Staff Writers
Washington DC (SPX) Nov 19, 2014


This is an image of the electron beam produced on an Yttrium-Aluminum-Garnet (YAG) phosphor screen. Image coutresy Sergey Baryshev/Euclid TechLabs.

On a quest to design an alternative to the two complex approaches currently used to produce electrons within microwave electron guns, a team of researchers from Euclid TechLabs and Argonne National Laboratory's Center for Nanoscale Materials have demonstrated a plug-and-play solution capable of operating in this high-electric-field environment with a high-quality electron beam.

Unfamiliar with microwave electron guns? Perhaps best known within the realm of X-ray sources, microwave electron guns provide a higher current and much higher quality electron beams than conventional DC guns. Beams of this sort are also used in free-electron lasers, synchrotrons, linear colliders and wakefield accelerator schemes.

But the electron emission mechanisms involved -- laser irradiation of materials (photocathodes) and heating of materials (thermionic cathodes) -- tend to be complex, bulky or extremely expensive.

To simplify the process, as the team describes in Applied Physics Letters, they turned to a third electron emission mechanism -- field emission -- to create a plug-and-play solution based on ultrananocrystalline diamond (UNCD) originally introduced at Argonne.

Field emission "is a process of liberating electrons from solid-state materials into a vacuum by the electric field," said Sergey Baryshev, a material scientist, and Sergey Antipov, an accelerator physicist, working for Euclid TechLabs.

"A strong electric field on the surface induces tunneling propagation through the surface barrier. So, essentially, our field-emission cathode (FEC) is an electron source alternative to photo or thermionic cathodes, which use an intense laser or high temperatures to liberate electrons," added Antipov.

At Argonne's Center for Nanoscale Materials, field emission properties of UNCD have been studied for several years, and researchers were able to demonstrate that UNCD performs better even in planar configurations, unlike other diamond films, which need to be shaped into high aspect ratio structures to locally enhance electric field and produce significant currents.

"This is due to the unique carbon bonding configuration within the few-atoms-wide grain boundaries surrounded by nano-sized UNCD grains, which yield very high field enhancement naturally," noted Ani Sumant, a nanoscientist and UNCD specialist at Argonne.

The team's study is the first known actual testing of a planar thin UNCD film in an electron injector, in which UNCD film virtually replaces a part of an inner copper wall subject to the strong oscillating electric field.

One surprise was discovering that "UNCD provides such a large charge and peak current with such low angle divergence and energy spread of the electron beam -- both of which are comparable with photocathodes," Baryshev said. "The produced electron beam is of very high quality."

Importantly, UNCD survived under harsh conditions in the microwave gun without noticeable degradation for an extended period of time. "The planar geometry of UNCD may help distribute the total electric field experienced by narrow grain boundaries--more than a trillion per square centimeter," explained Sumant.

While the UNCD FEC may one day become a true commodity electron source for conventional copper-based accelerators, the team expects to see the most interesting implications within the field of superconducting radio frequency (SRF) accelerators.

"SRF systems potentially offer higher duty cycles, which equate to higher production rates, which is important for industry," said Chunguang Jing, vice president of Euclid TechLabs.

"Until now, though, SRF systems weren't considered attractive by industry because their wall-plug efficiency is low and, compared to conventional systems, mainly caused by using warm electron injectors with photocathodes (lasers) or thermionic (heaters) cathodes."

An accelerator is a complex system, and on a very basic level it's analogous to the microwave oven or kettle in your kitchen, so you can determine its wall-plug efficiency -- essentially how much consumed electricity was actually used vs. wasted.

"For SRF and conventional copper systems to produce an electron beam, this parameter is 10 percent. Its consumed energy will be 10 times greater, because 90 percent of it is wasted," noted Baryshev.

"It was previously demonstrated that if SRF were fully cryogenic under liquid helium temperatures, wall-plug efficiency could be boosted to 50 to 60 percent. Our UNCD FEC may enable this option by avoiding any warm parts within an SRF system."

Why is all of this so significant? One compelling reason is that fully cryogenic high-efficiency SRF accelerators can quickly translate into huge electricity cost savings -- on the order of millions of dollars per year -- compared to electron accelerator facilities using conventional accelerators.

The team's technology is relevant to "many existing industrial and medical challenges -- including those of the highest national importance," Baryshev added.

"Planar ultrananocrystalline diamond field emitter in accelerator RF electron injector: Performance metrics" by Sergey V. Baryshev, Sergey Antipov, Jiahang Shao, Chunguang Jing, Kenneth J. Perez Quintero, Jiaqi Qiu, Wanming Liu, Wei Gai, Alexei D. Kanareykin and Anirudha V. Sumant appears in the journal Applied Physics Letters


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New model clarifies photoexcited thin-film lattice dynamics
Washington DC (SPX) Nov 19, 2014
A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray diffraction. Lattice dynamics, atomic movements in a crystal structure, can influence the physical and chemical properties of a material. The phenomenon can be directly studied using ultrafast X-ray diffraction, in which femtosecond X- ... read more


TIME AND SPACE
U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

TIME AND SPACE
Second Time Through, Mars Rover Examines Chosen Rocks

Mars was warm enough for flowing water, but only briefly

Several Drives Push Opportunity Over 41-Kilometer Mark

Lockheed Martin Begins Final Assembly Of Next Mars Lander

TIME AND SPACE
Astronauts to get 'ISSpresso' coffee machine

Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

Study Investigates How Men and Women Adapt Differently to Spaceflight

TIME AND SPACE
China launches new remote sensing satellite

China expects to introduce space law around 2020

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

TIME AND SPACE
Expedition 42 Trio Launches on Time to Station

Italy's first female astronaut heads to ISS in Russian craft

Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

TIME AND SPACE
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Time-lapse video shows Orion's move to Cape Canaveral launch pad

TIME AND SPACE
How to estimate the magnetic field of an exoplanet?

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

TIME AND SPACE
Cloaking device hides across continuous range of angles

A new approach to the delivery of satellites to orbit

An efficient method to measure residual stress in 3D printed parts

Boeing Stacks Two Satellites to Launch as a Pair




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.