Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EARLY EARTH
Feeding limbs and nervous system of one of Earth's earliest animals discovered
by Staff Writers
Cambridge, UK (SPX) Mar 04, 2013


This is a Chengjiangocaris kunmingensis fuxinhuiid fossil revealing inside head. Credit: Yie Jang (Yunnan University).

An extraordinary find allowing scientists to see through the head of the 'fuxianhuiid' arthropod has revealed one of the earliest evolutionary examples of limbs used for feeding, along with the oldest nervous system to stretch beyond the head in fossil record.

Until now, all fossils found of this extremely early soft-bodied animal featured heads covered by a wide shell or 'carapace', obscuring underlying contents from detailed study.

But a new fossil-rich site in South China has been found to contain arthropod examples where the carapace has literally been 'flipped' over before fossilisation - allowing scientists to examine the fuxianhuiid head to an unprecedented extent.

The study, published in Nature, highlights the discovery of previously controversial limbs under the head, used to shovel sediment into the mouth as the fuxianhuiid crawled across the seabed, millions of years before creatures emerged from the oceans.

Scientists say that this could be the earliest and simplest example of manipulative limbs used for feeding purposes, hinting at the adaptive ability that made arthropods so successful and abundant - evolving into the insects, spiders and crustaceans we know today.

Using a feeding technique scientist's call 'detritus sweep-feeding', fuxianhuiids developed the limbs to push seafloor sediment into the mouth in order to filter it for organic matter - such as traces of decomposed seaweed - which constituted the creatures' food.

Fossils also revealed the oldest nervous system on record that is 'post-cephalic' - or beyond the head - consisting of only a single stark string in what was a very basic form of early life compared to today.

"Since biologists rely heavily on organisation of head appendages to classify arthropod groups, such as insects and spiders, our study provides a crucial reference point for reconstructing the evolutionary history and relationships of the most diverse and abundant animals on Earth," said Javier Ortega-Hernandez, from Cambridge's Department of Earth Sciences, who produced the research with Dr Nicholas Butterfield and colleagues from Yunnan University in Kunming, South China. "This is as early as we can currently see into arthropod limb development."

Fuxianhuiids existed around 520 million years ago, roughly 50 million years before primordial land animals crawled from the sea, and would have been one of the first examples of complex animal life - likely to have evolved from creatures resembling worms with legs. Arthropods were the first jointed animals, enabling them to crawl.

Fuxianhuiid arthropods would have spent most of their time grazing on the sea floor, using these newly discovered limbs to plow sediment into their mouths. They could probably also use their bodies to swim for short distances, like tadpole shrimps.

The fossils date from the early part of the event known as the 'Cambrian explosion', when life on Earth went from multi-cellular organisms we know very little about to a relatively sudden and wide spread explosion of diverse marine animals - the first recognisable evolutionary step for the animal kingdom we know today.

"These fossils are our best window to see the most primitive state of animals as we know them - including us," said Ortega-Hernandez. "Before that there is no clear indication in the fossil record of whether something was an animal or a plant - but we are still filling in the details, of which this is an important one."

While still a mystery, theories about the cause of the 'Cambrian Explosion' include possible correlations with oxygen rises, spikes in oceanic nutrient concentration, and genetic complexity reaching critical mass.

But the new site in South China where these fossils were found could prove to be key in uncovering ever more information about this pivotal period in the history of life on Earth. The Xiaoshiba 'biota' - that is the collection of all organisms preserved in the new locality - in China's Yunnan Province is similar to the world-famous Chengjiang biota, which provided many of the best arthropod fossil records to date.

"The Xiaoshiba biota is amazingly rich in such extraordinary fossils of early organisms," said Ortega-Hernandez. "Over 50 specimens of fuxianhuiids have been found in just over a year, whereas previous areas considered fossil rich such as Chengjiang it took years - even decades - to build up such a collection."

"So much material is so well preserved. There's massive potential for Xiaoshiba to become a huge deal for new discoveries in early animal evolution".

.


Related Links
University of Cambridge
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Resurrection of 3-billion-year-old antibiotic-resistance proteins
Washington DC (SPX) Mar 01, 2013
Scientists are reporting "laboratory resurrections" of several 2-3-billion-year-old proteins that are ancient ancestors of the enzymes that enable today's antibiotic-resistant bacteria to shrug off huge doses of penicillins, cephalosporins and other modern drugs. The achievement, reported in the Journal of the American Chemical Society, opens the door to a scientific "replay" of the evolution of ... read more


EARLY EARTH
China to use modified rocket for moon landing mission

Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

EARLY EARTH
Short Bump Gets Robotic Arm Closer to Rock Target

NASA fixing computer glitch on Mars Curiosity rover

Inspiration Mars to Pursue Human Mission to the Red Planet in 2018

Computer Swap on Curiosity Rover

EARLY EARTH
Tech sector rides on rich list

Brazil inventor struggles to collect royalties

Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

EARLY EARTH
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

EARLY EARTH
ESA's Columbus Biolab Facility

SpaceX set for third mission to space station

Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

EARLY EARTH
SpaceX's capsule arrives at ISS

Dragon Transporting Two ISS Experiments For AMES

SpaceX Optimistic Despite Dragon Capsule Mishap

'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

EARLY EARTH
Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

EARLY EARTH
SimCity rebuilt for modern life

Taiwan turns plastic junk into blankets, dolls

Fukushima raised cancer risk near plant: WHO

Ancient Egyptian pigment points to new security ink technology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement