Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
Exploring the magnetism of a single atom
by Staff Writers
Lausanne, Switzerland (SPX) May 12, 2014


File image.

Magnetic devices like hard drives, magnetic random access memories (MRAMs), molecular magnets, and quantum computers depend on the manipulation of magnetic properties. In an atom, magnetism arises from the spin and orbital momentum of its electrons. 'Magnetic anisotropy' describes how an atom's magnetic properties depend on the orientation of the electrons' orbits relative to the structure of a material.

It also provides directionality and stability to magnetization. Publishing in Science, researchers led by EPFL combine various experimental and computational methods to measure for the first time the energy needed to change the magnetic anisotropy of a single Cobalt atom. Their methodology and findings can impact a range of fields from fundamental studies of single atom and single molecule magnetism to the design of spintronic device architectures.

Magnetism is used widely in technologies from hard drives to magnetic resonance, and even in quantum computer designs. In theory, every atom or molecule has the potential to be magnetic, since this depends on the movement of its electrons.

Electrons move in two ways: Spin, which can loosely be thought as spinning around themselves, and orbit, which refers to an electron's movement around the nucleus of its atom. The spin and orbital motion gives rise to the magnetization, similar to an electric current circulating in a coil and producing a magnetic field. The spinning direction of the electrons therefore defines the direction of the magnetization in a material.

The magnetic properties of a material have a certain 'preference' or 'stubbornness' towards a specific direction. This phenomenon is referred to as 'magnetic anisotropy', and is described as the "directional dependence" of a material's magnetism. Changing this 'preference' requires a certain amount of energy. The total energy corresponding to a material's magnetic anisotropy is a fundamental constraint to the downscaling of magnetic devices like MRAMs, computer hard drives and even quantum computers, which use different electron spin states as distinct information units, or 'qubits'.

The team of Harald Brune at EPFL, working with scientists at the ETH Zurich, Paul Scherrer Institute, and IBM Almaden Research Center, have developed a method to determine the maximum possible magnetic anisotropy for a single Cobalt atom. Cobalt, which is classed as a 'transition metal', is widely used in the fabrication of permanent magnets as well as in magnetic recording materials for data storage applications.

The researchers used a technique called inelastic electron tunneling spectroscopy to probe the quantum spin states of a single cobalt atom bound to an MgO layer. The technique uses an atom-sized scanning tip that allows the passage (or 'tunneling') of electrons to the bound cobalt atom. When electrons tunneled through, they transferred energy the cobalt atom, inducing changes in its spin properties.

The experiments showed the maximum magnetic anisotropy energy of a single atom (~60 millielectron volts) and the longest spin lifetime for a single transition metal atom. This large anisotropy leads to a remarkable magnetic moment, which has been determined with synchrotron-based measurements at the X-Treme beamline at the Swiss Light Source. Though fundamental, these findings open the way for a better understanding of magnetic anisotropy and present a single-atom model system that can be conceivably used as a future 'qubit'.

"Quantum computing uses quantum states of matter, and magnetic properties are such a quantum state", says Harald Brune. "They have a life-time, and you can use the individual suface adsorbed atoms to make qubits. Our system is a model for such a state. It allows us to optimize the quantum properties, and it is easier than previous ones, because we know exactly where the cobalt atom is in relation to the MgO layer."

This work represents a collaboration between EPFL's Laboratory of Nanostructures at Surfaces (LNS), IBM's Almaden Research Center, ETH Zurich's Department of Materials, Paul Scherrer Institute's Swiss Light Source, and Georgetown University's Department of Physics Rau IG, Baumann S, Rusponi S, Donati F, Stepanow S, Gragnaniello L, Dreiser J, Piamonteze C, Nolting F, Gangopadhyay S, Albertini OR, Macfarlane RM, Lutz CP, Jones B, Gambardella P, Heinrich AJ, Harald Brune. 2014. Reaching the magnetic anisotropy limit of a 3d metal atom. Science 08 May 2014.

.


Related Links
Ecole Polytechnique Federale de Lausanne
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Experiment on Earth demonstrates effect observed in space
Rochester NY (SPX) May 01, 2014
Streaming jets of high-speed matter produce some of the most stunning objects seen in space. Astronomers have seen them shooting out of young stars just being formed, X-ray binary stars and even the supermassive black holes at the centers of large galaxies. Theoretical explanations for what causes those beam-like jets have been around for years, but now an experiment by French and American ... read more


TIME AND SPACE
Russia to begin Moon colonization in 2030

Saturn in opposition tonight, will appear next to the moon

LRO View of Earth

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

TIME AND SPACE
Opportunity In Search Of Aluminum-Hydroxyl Clays

Against the current with lava flows

NASA wants greenhouse on Mars by 2021

Reset and Recovery for Opportunity

TIME AND SPACE
Chris Hadfield's 'Space Oddity' video to be taken off YouTube

'Convergent' Research Solves Problems that Cross Disciplinary Boundaries

Pioneering Test Pilot Bill Dana Dies at Age 83

More Plant Science as Expedition 39 Trio Trains for Departure

TIME AND SPACE
The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

China launches experimental satellite

TIME AND SPACE
Three astronauts land back on Earth in Soyuz capsule

Expedition 39 Trio Wrapping Up Six Months on Station

Russia to only use ISS until 2020: official

Ham video premiers on Space Station

TIME AND SPACE
Replacing Russian-made rocket engines is not easy

Pre-launch processing begins for the O3b Networks satellites

US sanctions against Russia had no effect on International Launch Services

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

TIME AND SPACE
New Exomoon Hunting Technique Could Find Solar System-like Moons

Odd planet, so far from its star

Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

TIME AND SPACE
China aids in cutting down space debris

Space junk problem discussed

Exelis advancing sensor detection system

Airbus Defence and Space in radar technology study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.