Subscribe free to our newsletters via your
. 24/7 Space News .




EARTH OBSERVATION
Exploring the last white spot on Earth
by Staff Writers
Grenoble, France (SPX) Nov 15, 2011


This image shows the heating of a catalyst sample in an "in situ" cell at actual operating conditions. The catalyst is studied using time-resolved X-ray absorption spectroscopy. At ID24, the time resolution can be as short as a few microseconds. Credit: ESRF.

Scientists will soon be exploring matter at temperatures and pressures so extreme it can only be produced for microseconds using powerful pulsed lasers. Matter in such states is present in the Earth's liquid iron core, 2500 kilometres beneath the surface, and also in elusive "warm dense matter" inside large planets like Jupiter.

A new X-ray beamline ID24 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, allows a new quality of exploration of the last white spot on our globe: the centre of the Earth.

We know surprisingly little about the interior of the Earth. The pressure at the centre can be calculated accurately from the propagation of Earthquake waves, and it is about three and a half million times atmospheric pressure. The temperature at the centre of the Earth, however, is unknown, but it is thought to be roughly as hot as the surface of the sun.

ID24, which was inaugurated today, opens new fields of science, being able to observe like in a time-lapse film sequence many rapid processes, whether laser-heating of iron to 10.000 degrees, charge reactions in new batteries or catalysts cleaning pollutants.

It is the first of eight new beamlines built within the ESRF Upgrade Programme, a 180 million Euros investment over eight years to maintain the world-leading role of the ESRF. ID24 extends the existing capabilities at the ESRF in X-ray absorption spectroscopy to sample volumes twenty times smaller and time resolutions one thousand times better than in the past.

"Scientists can use several other synchrotrons notably in Japan and the U.S for fast X-ray absorption spectroscopy, but it is the microsecond time resolution for single shot acquisition (or experiments) coupled to the micron sized spot that makes ID24 unique worldwide," says Sakura Pascarelli, beamline responsible scientist for ID24.

"The rebuilt ID24 sets the ESRF apart, and even before the first users have arrived, I am asked to share our technology."

The Earth's interior is literally inaccessible and today it is easier to reach Mars than to visit even the base of the Earth's thin crust.

Scientists can however reproduce the extreme pressure and temperature of a planet's interior in the laboratory, using diamond anvil cells to squeeze a material and once under pressure, heat it with short, intense laser pulses. However, these samples are not bigger than the size of a speck of dust and remain stable under high temperatures only for very short time, measured in microseconds.

Thanks to new technologies employed at ID24, scientists can now study what happens at extreme conditions, for example when materials undergo a fast chemical reaction or at what temperature a mineral will melt in the interior of a planet. Germanium micro strip detectors enable measurements to be made sequentially and very rapidly (a million in one second) in order not to miss any detail.

A stable, microscopic X-ray beam means they can also be made in two dimensions by scanning across a sample to obtain a map instead of a measurement only at a single point. A powerful infrared spectrometer complements the X-ray detectors for the study of chemical reactions under industrial processing conditions.

Today, geologists want to know whether a chemical reaction exists between the Earth's mostly liquid core and the rocky mantle surrounding it.

They would like to know the melting temperature of materials other than iron that might be present in the Earth's core in order to make better models for how the core - which produces the Earth's magnetic field - works and to understand why the magnetic field changes over time and periodically in Earth's history, has disappeared and reversed.

We know even less about warm dense matter believed to exist in the core of larger planets, for example Jupiter, which should be even hotter and denser. It can be produced in the laboratory using extremely powerful laser shock pulses compressing and heating a sample.

The dream of revealing the secrets of the electronic and local structure in this state of matter with X-rays is now becoming reality, as ID24 allows to look at sample volumes 10000 times smaller than those at the high power laser facilities, making these experiments possible at the synchrotron using table top lasers.

The ID24 beamline works like an active probe rather than a passive detector, firing an intense beam of X-rays at a sample. It uses a technique called X-ray absorption spectroscopy where the way how atoms of a given chemical element absorb X-rays is studied in fine detail.

From this data not only the abundance of an element can be deducted but also its chemical states and which other atoms, or elements, are in their immediate neighborhood, and how distant they are. In short, a complete picture at the atomic scale of the sample studied is obtained.

In the past weeks, ID24 has been tested with X-ray beams, and it will be open for users from across the world as of May 2012, after the ESRF winter shutdown 2011/12. The date for its inauguration was chosen to coincide with the autumn meeting of the ESRF's Science Advisory Committee of external experts who played a key role in selecting the science case for ID24 and the other Upgrade Beamlines.

"ID24 opens unchartered territories of scientific exploration, as will the seven other beamlines of the ESRF Upgrade Programme. The economic crisis has hit our budgets hard, and it is not obvious to deliver new opportunities for research and industrial innovation under these circumstances", says Harald Reichert, ESRF Director of Research.

"I wish to congratulate the project team for extraordinary achievements, and I look forward to seeing some extraordinary new science."

.


Related Links
European Synchrotron Radiation Facility
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
NRL's MIGHTI selected by NASA for potential space flight
Washington DC (SPX) Nov 15, 2011
A Naval Research Laboratory instrument designed to study the Earth's thermosphere is part of a future science mission that has been selected by NASA for evaluation for flight. The NRL-developed Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) satellite instrument is part of the Ionospheric Connection Explorer (ICON) mission, led by Thomas Immel at the Univ ... read more


EARTH OBSERVATION
Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

Ancient Lunar Dynamo May Explain Magnetized Moon Rocks

Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

EARTH OBSERVATION
'Frustration' in Europe over joint Mars probe: NASA

NASA readies launch of 'dream machine' to Mars

Contact with Russian Mars probe 'unlikely' - expert

Mars explorers will include women, experts say

EARTH OBSERVATION
Voyager 2 Completes Switch to Backup Thruster Set

Romanian accused of hacking NASA servers arrested

Singapore family books $1 million Virgin space flight

International consensus on joint space exploration

EARTH OBSERVATION
China completes second space docking

China sets up management body for orbiting space lab

Second Tiangong-1 And Shenzhou-8 docking to face light interference

Made-in-Chengdu to help Shenzhou spacecraft return

EARTH OBSERVATION
Soyuz TMA-22 manned transportation spacecraft launched towards ISS

New Crew Launches to Join Expedition 29

Russia sends astronauts back to space after mishaps

Russia launches three astronauts for space station

EARTH OBSERVATION
Air Force Opens Door to Rocket Launch Competition

International Launch Services and Eutelsat Announce Launch of the W3D Satellite in 2013

ILS and Eutelsat Announce Launch of the W3D Satellite in 2013

The second Soyuz launcher's Fregat upper stage is readied for flight

EARTH OBSERVATION
Giant planet ejected from the solar system

Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

Herschel Finds Oceans of Water in Disk of Nearby Star

EARTH OBSERVATION
Kindle Fire shipping to mixed reviews

Firm makes iPhone Geiger counter for worried Japanese

Ballmer says "Windows Era" everlasting

Custom glass bending




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement