Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Entire Star Cluster Thrown Out of its Galaxy
by Staff Writers
Cambridge MA (SPX) May 02, 2014


This artist's illustration shows the hypervelocity star cluster HVGC-1 escaping from the supergiant elliptical galaxy M87. HVGC-1 is the first runaway star cluster discovered by astronomers. It is fated to drift through intergalactic space. Image courtesy David A. Aguilar (CfA).

The galaxy known as M87 has a fastball that would be the envy of any baseball pitcher. It has thrown an entire star cluster toward us at more than two million miles per hour. The newly discovered cluster, which astronomers named HVGC-1, is now on a fast journey to nowhere. Its fate: to drift through the void between the galaxies for all time.

"Astronomers have found runaway stars before, but this is the first time we've found a runaway star cluster," says Nelson Caldwell of the Harvard-Smithsonian Center for Astrophysics. Caldwell is lead author on the study, which will be published in The Astrophysical Journal Letters and is available online.

The "HVGC" in HVGC-1 stands for hypervelocity globular cluster. Globular clusters are relics of the early universe. These groupings usually contain thousands of stars crammed into a ball a few dozen light-years across. The Milky Way galaxy is home to about 150 globular clusters. The giant elliptical galaxy M87, in contrast, holds thousands.

It took a stroke of luck to find HVGC-1. The discovery team has spent years studying the space around M87. They first sorted targets by color to separate stars and galaxies from globular clusters. Then they used the Hectospec instrument on the MMT Telescope in Arizona to examine hundreds of globular clusters in detail.

A computer automatically analyzed the data and calculated the speed of every cluster. Any oddities were examined by hand. Most of those turned out to be glitches, but HVGC-1 was different. Its surprisingly high velocity was real.

"We didn't expect to find anything moving that fast," says Jay Strader of Michigan State University, a co-author on the study.

How did HVGC-1 get ejected at such a high speed? Astronomers aren't sure but say that one scenario depends on M87 having a pair of supermassive black holes at its core. The star cluster wandered too close to those black holes. Many of its outer stars were plucked off, but the dense core of the cluster remained intact. The two black holes then acted like a slingshot, flinging the cluster away at tremendous speed.

HVGC-1 is moving so fast that it is doomed to escape M87 altogether. In fact, it may have already left the galaxy and be sailing out into intergalactic space.

M87, source of the hypervelocity cluster HVGC-1, is a king among galaxies. This supergiant elliptical galaxy weighs as much as 6 trillion Suns, making it one of the most massive galaxies in the nearby universe.

The discovery of HVGC-1 suggests that the core of M87 holds not one but two supermassive black holes. This must be the result of a long-ago collision between two galaxies, which merged to form a single giant galaxy. The same fate awaits our own Milky Way, which will collide with the Andromeda galaxy in a few billion years to create an elliptical galaxy that astronomers have dubbed Milkomeda.

Science Paper

.


Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Well-behaved, Young Galaxy Surprises Astronomers
Pasadena CA (JPL) (SPX) May 01, 2014
Scientists have discovered a young galaxy acting in unexpectedly mature ways. The galaxy, called S0901, is rotating in a calm manner typical of more developed galaxies like our own spiral Milky Way. "Usually, when astronomers examine galaxies in an early era, they find that turbulence plays a much greater role than it does in modern galaxies. But S0901 is a clear exception to that pattern, ... read more


STELLAR CHEMISTRY
Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

NASA Completes LADEE Mission with Planned Impact on Moon's Surface

Russia plans to get a foothold in the Moon

STELLAR CHEMISTRY
ISS research shows that hardy little space travelers could colonize Mars

Target on Mars Looks Good for NASA Rover Drilling

Mars Rover Switches to Driving Backwards Due to Elevated Wheel Currents

Mission to Mars

STELLAR CHEMISTRY
NASA's Next Prototype Spacesuit has a Brand New Look, and it's All Thanks to You

NASA Invests in Hundreds of US Small Businesses to Enable Future Missions

Orion Undergoes Simulation Of Intense Launch Vibrations

Orion Exploration Design Challenge Winner Announced

STELLAR CHEMISTRY
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

STELLAR CHEMISTRY
NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

Astronauts Prep for Spacewalk as Mission Managers Evaluate Busy Schedule

STELLAR CHEMISTRY
Replacing Russian-made rocket engines is not easy

Parallel Ariane 5 and Soyuz mission campaigns keep Arianespace on track

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

ILS Satellite Launches Remain on Schedule Despite Sanctions

STELLAR CHEMISTRY
Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

STELLAR CHEMISTRY
TV terrifies and compels with viruses and robots

Newly Identified 'Universal' Property of Metamagnets May Lead to Everyday Uses

Big data poses great challenges and opportunities for databases

Researchers Develop Harder Ceramic for Armor Windows




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.