.  . 

by Staff Writers Waterloo, Canada (SPX) Dec 26, 2012
Condensed matter physics  the branch of physics responsible for discovering and describing most of these phases  has traditionally classified phases by the way their fundamental building blocks  usually atoms  are arranged. The key is something called symmetry. To understand symmetry, imagine flying through liquid water in an impossibly tiny ship: the atoms would swirl randomly around you and every direction  whether up, down, or sideways  would be the same. The technical term for this is "symmetry"  and liquids are highly symmetric. Crystal ice, another phase of water, is less symmetric. If you flew through ice in the same way, you would see the straight rows of crystalline structures passing as regularly as the girders of an unfinished skyscraper. Certain angles would give you different views. Certain paths would be blocked, others wide open. Ice has many symmetries  every "floor" and every "room" would look the same, for instance  but physicists would say that the high symmetry of liquid water is broken. Classifying the phases of matter by describing their symmetries and where and how those symmetries break is known as the Landau paradigm. More than simply a way of arranging the phases of matter into a chart, Landau's theory is a powerful tool which both guides scientists in discovering new phases of matter and helps them grapple with the behaviours of the known phases. Physicists were so pleased with Landau's theory that for a long time they believed that all phases of matter could be described by symmetries. That's why it was such an eyeopening experience when they discovered a handful of phases that Landau couldn't describe. Beginning in the 1980s, condensed matter researchers, including XiaoGang Wen  now a faculty member at Perimeter Institute  investigated new quantum systems where numerous ground states existed with the same symmetry. Wen pointed out that those new states contain a new kind of order: topological order. Topological order is a quantum mechanical phenomenon: it is not related to the symmetry of the ground state, but instead to the global properties of the ground state's wave function. Therefore, it transcends the Landau paradigm, which is based on classical physics concepts. Topological order is a more general understanding of quantum phases and the transitions between them. In the new framework, the phases of matter were described not by the patterns of symmetry in the ground state, but by the patterns of a decidedly quantum property  entanglement. When two particles are entangled, certain measurements performed on one of them immediately affect the other, no matter how far apart the particles are. The patterns of such quantum effects, unlike the patterns of the atomic positions, could not be described by their symmetries. If you were to describe a city as a topologically ordered state from the cockpit of your impossibly tiny ship, you'd no longer be describing the girders and buildings of the crystals you passed, but rather invisible connections between them  rather like describing a city based on the information flow in its telephone system. This more general description of matter developed by Wen and collaborators was powerful  but there were still a few phases that didn't fit. Specifically, there were a set of shortrange entangled phases that did not break the symmetry, the socalled symmetryprotected topological phases. Examples of symmetryprotected phases include some topological superconductors and topological insulators, which are of widespread immediate interest because they show promise for use in the coming first generation of quantum electronics. In the paper featured in Science, Wen and collaborators reveal a new system which can, at last, successfully classify these symmetryprotected phases. Using modern mathematics  specifically group cohomology theory and group supercohomology theory  the researchers have constructed and classified the symmetryprotected phases in any number of dimensions and for any symmetries. Their new classification system will provide insight about these quantum phases of matter, which may in turn increase our ability to design states of matter for use in superconductors or quantum computers. This paper is a revealing look at the intricate and fascinating world of quantum entanglement, and an important step toward a modern reclassification of all phases of matter. Read the paper in Science; An introduction to understanding phases of matter based on symmetry
Related Links Perimeter Institute for Theoretical Physics Understanding Time and Space


The content herein, unless otherwise known to be public domain, are Copyright 19952014  Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence FrancePresse, United Press International and IndoAsia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement 