Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




ENERGY TECH
Enhancing battery performance
by Staff Writers
Washington DC (SPX) Nov 28, 2013


This is a schematic illustration of the crystal structure of LiCoO2. Image reproduced from APL Materials.

The ever-increasing market for portable electronic devices such as laptops, cell phones and MP3 players has resulted in an equally heavy demand for secondary batteries -- more commonly known as rechargeable batteries -- Lithium-ion (Li-ion) being among the most popular.

Scientists and engineers worldwide are seeking ways to improve the power density, durability and overall performance of Lithium-ion batteries, and in a recent paper in the AIP Publishing journal APL Materials, Japanese researchers from a public-private team report an advance in Li-ion battery technology that they describe as a major breakthrough.

They fabricated a cathode (positive electrode) of lithium cobalt oxide (LiCoO2) in which the compound's individual grains are aligned in a specific orientation. The researchers claim that this yields a significantly higher-performing battery than one with a randomly-oriented LiCoO2 cathode.

Primary, or non-rechargeable, batteries and secondary batteries both produce current through an electrochemical reaction involving a cathode, an anode, and an electrolyte (an ion-conducting material).

However, apply an outside current to a secondary battery and the negative-to-positive electron flow that occurs during discharge is reversed. This allows the battery to restore lost charge.

"In a lithium-ion battery, lithium ions move from the anode to the cathode during discharge and back when charging," said Tohru Suzuki, a co-author on the APL Materials paper.

"The material in the cathode has a layered structure to facilitate intercalation [insertion] of the lithium ions; if the structure is oriented in a specific fashion, the lithium ions have better access to the lattice and, in turn, charge-discharge performance is improved."

Using a rotating magnetic field, the researchers were able to fabricate the ideal textured microstructure of the individual LiCoO2 grains making up the cathode: a perpendicular alignment of the c-plane (the vertical side) and a random orientation of the c-axis.

Unlike cathodes where the microstructures in both the c-plane and c-axis are randomly oriented, the specialized grains allow easy access for lithium ions while relaxing the stress associated with intercalation.

"This yields a highly efficient flow of electrons in both directions," Suzuki said.

Collaborating on the work were researchers from the National Institute for Materials Science (Tsukuba, Japan), the NIMS-Toyota Materials Center of Excellence for Sustainable Mobility (Tsukuba, Japan) and Toyota Motor Corporation's Higashifuji Technical Center (Susono, Japan). The article, "Ideal design of textured LiCoO2 sintered electrode for Li-ion secondary battery" by Hideto Yamada, Tohru S. Suzuki, Tetsuo Uchikoshi, Masato Hozumi, Toshiya Saito and Yoshio Sakka appears in the journal APL Materials.

.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Holistic Cell Design Leads to High-Performance, Long Cycle Lithium-Sulfur Battery
Berkeley CA (SPX) Nov 28, 2013
Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery's capacity. This is longest cycle life reported so far for any ... read more


ENERGY TECH
Spotlight on China's Moon Rover

We're Going to the Moon!

NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

ENERGY TECH
Curiosity Resumes Science After Analysis of Voltage Issue

Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

ENERGY TECH
Orion Flight Test Hardware Thrives Under Pressure

International Space Station to enjoy Thanksgiving dinner

NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

ENERGY TECH
China names moon rover "Yutu"

China launches experimental satellite

China to send 'jade rabbit' to Moon: state media

"Gravity" director wants China to take him into space

ENERGY TECH
ISS Benefits for Humanity in Plain Sight in New Video Feature

Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

ENERGY TECH
Second rocket launch site depends on satellite size, cost-benefit

Private US launch of satellite delayed

Stepping up Vega launcher production

Czech and XCOR Sign Payload Integrator Agreement for Suborbital Flights

ENERGY TECH
Search for habitable planets should be more conservative

NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

ENERGY TECH
Crippled space telescope given second life, new mission

Scientists create perfect solution to iron out kinks in surfaces

What might recyclable satellites look like?

Overcoming Brittleness: New Insights into Bulk Metallic Glass




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement