Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Dwarf planet sized up accurately as it blocks light of faint star
by Staff Writers
Paris (ESO) Oct 27, 2011


This artist's impression shows the distant dwarf planet Eris. New observations have shown that Eris is smaller than previously thought and almost exactly the same size as Pluto. Eris is extremely reflective and its surface is probably covered in frost formed from the frozen remains of its atmosphere. Credit: ESO/L. Calcada.

Astronomers have accurately measured the diameter of the faraway dwarf planet Eris for the first time by catching it as it passed in front of a faint star. This event was seen at the end of 2010 by telescopes in Chile, including the Belgian TRAPPIST telescope at ESO's La Silla Observatory.

The observations show that Eris is an almost perfect twin of Pluto in size. Eris appears to have a very reflective surface, suggesting that it is uniformly covered in a thin layer of ice, probably a frozen atmosphere. The results will be published in the 27 October 2011 issue of the journal Nature.

In November 2010, the distant dwarf planet Eris passed in front of a faint background star, an event called an occultation. These occurrences are very rare and difficult to observe as the dwarf planet is very distant and small.

The next such event involving Eris will not happen until 2013. Occultations provide the most accurate, and often the only, way to measure the shape and size of a distant Solar System body.

The candidate star for the occultation was identified by studying pictures from the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory.

The observations were carefully planned and carried out by a team of astronomers from a number of (mainly French, Belgian, Spanish and Brazilian) universities using - among others - the TRAPPIST [1] (TRAnsiting Planets and PlanetesImals Small Telescope, eso1023) telescope, also at La Silla.

"Observing occultations by the tiny bodies beyond Neptune in the Solar System requires great precision and very careful planning. This is the best way to measure Eris's size, short of actually going there," explains Bruno Sicardy, the lead author.

Observations of the occultation were attempted from 26 locations around the globe on the predicted path of the dwarf planet's shadow - including several telescopes at amateur observatories, but only two sites were able to observe the event directly, both of them located in Chile.

One was at ESO's La Silla Observatory using the TRAPPIST telescope, and the other was located in San Pedro de Atacama and used two telescopes [2]. All three telescopes recorded a sudden drop in brightness as Eris blocked the light of the distant star.

The combined observations from the two Chilean sites indicate that Eris is close to spherical. These measurements should accurately measure its shape and size as long as they are not distorted by the presence of large mountains. Such features are, however, unlikely on such a large icy body.

Eris was identified as a large object in the outer Solar System in 2005. Its discovery was one of the factors that led to the creation of a new class of objects called dwarf planets and the reclassification of Pluto from planet to dwarf planet in 2006. Eris is currently three times further from the Sun than Pluto.

While earlier observations using other methods suggested that Eris was probably about 25% larger than Pluto with an estimated diameter of 3000 kilometres, the new study proves that the two objects are essentially the same size.

Eris's newly determined diameter stands at 2326 kilometres, with an accuracy of 12 kilometres. This makes its size better known than that of its closer counterpart Pluto, which has a diameter estimated to be between 2300 and 2400 kilometres.

Pluto's diameter is harder to measure because the presence of an atmosphere makes its edge impossible to detect directly by occultations. The motion of Eris's satellite Dysnomia [3] was used to estimate the mass of Eris. It was found to be 27% heavier than Pluto [4]. Combined with its diameter, this provided Eris's density, estimated at 2.52 grams per cm3 [5].

"This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice," comments Emmanuel Jehin, who contributed to the study [6].

The surface of Eris was found to be extremely reflective, reflecting 96% of the light that falls on it (a visible albedo of 0.96 [7]). This is even brighter than fresh snow on Earth, making Eris one of the most reflective objects in the Solar System, along with Saturn's icy moon Enceladus.

The bright surface of Eris is most likely composed of a nitrogen-rich ice mixed with frozen methane - as indicated by the object's spectrum - coating the dwarf planet's surface in a thin and very reflective icy layer less than one millimetre thick.

"This layer of ice could result from the dwarf planet's nitrogen or methane atmosphere condensing as frost onto its surface as it moves away from the Sun in its elongated orbit and into an increasingly cold environment," Jehin adds. The ice could then turn back to gas as Eris approaches its closest point to the Sun, at a distance of about 5.7 billion kilometres.

The new results also allow the team to make a new measurement for the surface temperature of the dwarf planet. The estimates suggest a temperature for the surface facing the Sun of -238 Celsius at most, and an even lower value for the night side of Eris.

"It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes. Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members," concludes Bruno Sicardy.

Notes

[1] TRAPPIST is one of the latest robotic telescopes installed at the La Silla Observatory. With a main mirror just 0.6 metres across, it was inaugurated in June 2010 and is mainly dedicated to the study of exoplanets and comets. The telescope is a project funded by the Belgian Fund for Scientific Research (FRS-FNRS), with the participation of the Swiss National Science Foundation, and is controlled from Liege.

[2] The Caisey Harlingten and ASH2 telescopes.

[3] Eris is the Greek goddess of chaos and strife. Dysnomia is Eris' daughter and the goddess of lawlessness.

[4] Eris's mass is 1.66 x 1022 kg, corresponding to 22% of the mass of the Moon.

[5] For comparison, the Moon's density is 3.3 grams per cm3, and water's is 1.00 gram per cm3.

[6] The value of the density suggests that Eris is mainly composed of rock (85%), with a small ice content (15%). The latter is likely to be a layer, about 100 kilometre thick, that surrounds the large rocky core. This very thick layer of mostly water ice is not to be confused with the very thin layer of frozen atmosphere on Eris's surface that makes it so reflective.

[7] The albedo of an object represents the fraction of the light that falls on it that is scattered back into space rather than absorbed. An albedo of 1 corresponds to perfect reflecting white, while 0 is totally absorbing black. For comparison, the Moon's albedo is only 0.136, similar to that of coal.

This research was presented in a paper to appear in the 27 October 2011 issue of the journal Nature.

.


Related Links
TRAPPIST webpage
Article about TRAPPIST in September 2011 issue of the ESO Messenger
ESO
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Herschel Finds Oceans of Water in Disk of Nearby Star
Pasadena CA (JPL) Oct 21, 2011
Using data from the Herschel Space Observatory, astronomers have detected for the first time cold water vapor enveloping a dusty disk around a young star. The findings suggest that this disk, which is poised to develop into a solar system, contains great quantities of water, suggesting that water-covered planets like Earth may be common in the universe. Herschel is a European Space Agency ... read more


EXO WORLDS
Lunar Probe to search for water on Moon

Subtly Shaded Map of Moon Reveals Titanium Treasure Troves

NASA's Moon Twins Going Their Own Way

Titanium treasure found on Moon

EXO WORLDS
Opportunity Past 21 Miles of Driving! Will Spend Winter at Cape York

Scientists develope new way to determine when water was present on Mars and Earth

Mars Rover Carries Device for Underground Scouting

Mars Landing-Site Specialist

EXO WORLDS
NASA's NEEMO Mission Ending Early Due To Hurricane Rina

Explorer 1 The First US Explorer

NASA evacuates astronauts from deep-sea training

Is Your Space Elevator Going Up

EXO WORLDS
China to launch Shenzhou-8 early November

China plans space lab docking

Living on Tiangong

Thousands of dreams to fly on Shenzhou 8

EXO WORLDS
Russian Space Agency names next crew to ISS

ISS orbit readjusted by 3 km

Expedition 30 to ISS could be launched on Dec 21

ISS could be used for satellite assembly until 2028

EXO WORLDS
NASA to launch weather-climate satellite Friday

Weather Favorable for NPP Launch

Vega arrives at French Guiana in preparation for its January 26 inaugural launch

SpaceX Completes Key Milestone to Fly Astronauts to International Space Station

EXO WORLDS
Three New Planets and a Mystery Object Discovered Outside Our Solar System

Dwarf planet sized up accurately as it blocks light of faint star

Herschel Finds Oceans of Water in Disk of Nearby Star

UH Astronomer Finds Planet in the Process of Forming

EXO WORLDS
Reversing course, Hewlett-Packard to keep PC unit

Video game makers ready barrage of blockbusters

RIM stock suffers on new tablet software stall

Wearable depth-sensing projection system makes any surface capable of multitouch interaction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement