Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




EXO WORLDS
Dust Grains Highlight the Path to Planet Formation
by Staff Writers
Tokyo, Japan (SPX) Nov 29, 2012


UX Tau A's protoplanetary disk extends to a radius of 120 AU (1 AU = the distance between the Earth and the Sun) with a high spatial resolution of 0.1" (arcsecond). Left: Near-infrared intensity image of UX Tau A. White is the brightest, and then red. The background is dark blue. The disk is slightly elongated in the north-south direction (top to bottom in the figure). Its west side (on the right) is a little brighter than its east side; this indicates that the inclination of the disk is in the east-west direction and that its west side is closer to the observer (see figure on the right). Right: Schematic diagram of the inclination of the protoplanetary disk of UX Tau A. Credit for left and right sides of figure: NAOJ. For a larger version of this image please go here.

An international team of researchers from the National Astronomical Observatory of Japan (NAOJ) and the Japanese universities of Kobe, Hyogo, and Saitama used the Subaru Telescope to capture a clear image of the protoplanetary disk of the star UX Tauri A.

The team's subsequent, detailed study of the disk's characteristics suggests that its dust particles are large in size and non-spherical in shape. This exciting result shows that these dust grains are colliding with and adhering to each other, a process that will lead to their eventual formation into planets.

A major goal of the SEEDS Project (Note 1) is to explore hundreds of nearby stars in an effort to directly image extrasolar planets and protoplanetary/debris disks.

As part of this important project, the current team of researchers used the Subaru High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) mounted on the Subaru Telescope to observe UX Tau A, a young star in the constellation Taurus's molecular cloud or "star nursery", where many lower mass stars are being born.

They were able to detect the disk of gas and dust around the star, its "circumstellar disk", which is then referred to as a protoplanetary disk when it is a site of planet formation.

The team made a detailed study of UX Tau A in the near-infrared wavelengths. They measured the polarization (Note 2) of infrared light to find out the distribution of the dust particles that scattered the infrared light. Polarized light reflected from dust particles gives important information about planetary formation in disks.

Even though dust particles only make up a tiny fraction of the protoplanetary disk, they can develop into planetesimals (solid objects less than a kilometer in diameter), and eventually, planets.

The light from this disk is strongly polarized; its angle of polarization shows a concentric pattern relative to the central star.

Yoichi Itoh (University of Hyogo) expressed his surprise: "The objects we have observed so far show a high degree of polarization no matter what the angle is. However, the polarization of this particular object ranges widely from 2 to 66 % as the polarization angle changes. It was a pleasant challenge to explain this characteristic."

Dust particles in the protoplanetary disk originally came from interstellar space and are only 0.1 microns in size. Small grain particles, which are much smaller than the observed wavelength, can produce a high degree of polarization regardless of their location.

If the grain size is similar to the observed wavelength, the scattering performance is different. However, these principles do not account for the current observation.

Itoh explained, "Only particles with a non-spherical shape and a size of 30 microns, which is much larger than the near-infrared wavelength that was used for the observation, can explain the features of our observation."

How did this happen? Dust in the disk of UX Tau A collided and stuck together to grow to 30 microns. The researchers were fortunate to witness dust particles at a critical phase in their path to becoming a fully-grown planet in the protoplanetary disk.

References: The research paper entitled "High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A" by Tanii et al. is scheduled to be published in the Publications of the Astronomical Observatory of Japan in December 2012.

.


Related Links
National Astronomical Observatory of Japan
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Low-mass planets make good neighbours for debris discs
Paris, France (ESA) Nov 29, 2012
Astronomers using ESA's Herschel Space Observatory have detected massive debris discs around 61 Virginis and Gliese 581, two nearby stars that are known to host super-Earth planets. The study also reveals that debris discs are preferentially found in planetary systems with low-mass planets rather than in those hosting high-mass planets. This suggests that debris discs may survive mor ... read more


EXO WORLDS
China's Chang'e-3 to land on moon next year

Moon crater yields impact clues

Study: Moon basin formed by giant impact

NASA's LADEE Spacecraft Gets Final Science Instrument Installed

EXO WORLDS
Regional Dust Storm Dissipating

One Year After Launch, Curiosity Rover Busy on Mars

Fostering Curiosity: Mars Express relays rocky images

Matijevic Hill Survey Complete And Rover Passes 22 Miles Of Driving!

EXO WORLDS
Why Study Plants in Space?

Who's Killing the Space Program?

Fly me to the universe

UK Secures Billion Pound Package For Space Investment

EXO WORLDS
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

EXO WORLDS
NASA, Roscosmos Assign Veteran Crew to Yearlong Space Station Mission

Three ISS crew return to Earth in Russian capsule

Station Crew Off Duty After Undocking

Space station command changes

EXO WORLDS
South Korean rocket launch suspended

EchoStar and Arianespace sign new satellite launch services contract

Soyuz ready for Friday launch of Pleiades 1B at Kourou

Sea Launch Postpones Satellite Launch Until Dec. 3

EXO WORLDS
Low-mass planets make good neighbours for debris discs

Dust Grains Highlight the Path to Planet Formation

Magnesium oxide: From Earth to super-Earth

Rare image of Super-Jupiter sheds light on planet formation

EXO WORLDS
NASA Technologists Test 'Game-Changing' Data-Processing Technology

UTC Aerospace Systems Selects Headwall Hyperspectral Imaging Sensor For SYERS-2 Program

Samsung launches new Internet-connected camera

20 workers injured as tornado hits Italy steel plant




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement