Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Down to the quantum dot
by Staff Writers
Julich, Switzerland (SPX) Jul 09, 2015


Left: The scanning quantum dot micrograph of a PTCDA molecule reveals the negative partial charges at the ends of the molecule as well as the positive partial charges in the center. Center: Simulated electric potential above a PTCDA molecule with molecular structure. Right: Schematic of charge distribution in the PTCDA molecule. Image courtesy Forschungszentrum Juelich. For a larger version of this image please go here.

Using a single molecule as a sensor, scientists in Julich have successfully imaged electric potential fields with unrivalled precision. The ultrahigh-resolution images provide information on the distribution of charges in the electron shells of single molecules and even atoms. The 3D technique is also contact-free.

The first results achieved using "scanning quantum dot microscopy" have been published in the current issue of Physical Review Letters. The related publication was chosen as the Editor's suggestion and selected as a Viewpoint in the science portal Physics. The technique is relevant for diverse scientific fields including investigations into biomolecules and semiconductor materials.

"Our method is the first to image electric fields near the surface of a sample quantitatively with atomic precision on the sub-nanometre scale," says Dr. Ruslan Temirov from Forschungszentrum Julich. Such electric fields surround all nanostructures like an aura. Their properties provide information, for instance, on the distribution of charges in atoms or molecules.

For their measurements, the Julich researchers used an atomic force microscope. This functions a bit like a record player: a tip moves across the sample and pieces together a complete image of the surface.

To image electric fields up until now, scientists have used the entire front part of the scanning tip as a Kelvin probe. But the large size difference between the tip and the sample causes resolution difficulties - if we were to imagine that a single atom was the same size as a head of a pin, then the tip of the microscope would be as large as the Empire State Building.

Single molecule as a sensor
In order to improve resolution and sensitivity, the scientists in Julich attached a single molecule as a quantum dot to the tip of the microscope. Quantum dots are tiny structures, measuring no more than a few nanometres across, which due to quantum confinement can only assume certain, discrete states comparable to the energy level of a single atom.

The molecule at the tip of the microscope functions like a beam balance, which tilts to one side or the other. A shift in one direction or the other corresponds to the presence or absence of an additional electron, which either jumps from the tip to the molecule or does not.

The "molecular" balance does not compare weights but rather two electric fields that act on the mobile electron of the molecular sensor: the first is the field of a nanostructure being measured, and the second is a field surrounding the tip of the microscope, which carries a voltage.

"The voltage at the tip is varied until equilibrium is achieved. If we know what voltage has been applied, we can determine the field of the sample at the position of the molecule," explains Dr. Christian Wagner, a member of Temirov's Young Investigators group at Julich's Peter Grunberg Institute (PGI-3). "Because the whole molecular balance is so small, comprising only 38 atoms, we can create a very sharp image of the electric field of the sample. It's a bit like a camera with very small pixels."

Universally applicable
A patent is pending for the method, which is particularly suitable for measuring rough surfaces, for example those of semiconductor structures for electronic devices or folded biomolecules. "In contrast to many other forms of scanning probe microscopy, scanning quantum dot microscopy can even work at a distance of several nanometres.

In the nanoworld, this is quite a considerable distance," says Christian Wagner. Until now, the technique developed in Julich has only been applied in high vacuum and at low temperatures: essential prerequisites to carefully attach the single molecule to the tip of the microscope.

"In principle, variations that would work at room temperature are conceivable," believes the physicist. Other forms of quantum dots could be used as a sensor in place of the molecule, such as those that can be realized with semiconductor materials: one example would be quantum dots made of nanocrystals like those already being used in fundamental research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Forschungszentrum Juelich
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Spintronics advance brings wafer-scale quantum devices closer to reality
Chicago IL (SPX) Jul 09, 2015
An electronics technology that uses the "spin" - or magnetization - of atomic nuclei to store and process information promises huge gains in performance over today's electron-based devices. But getting there is proving challenging. Now researchers at the University of Chicago's Institute for Molecular Engineering (IME) have made a crucial step toward nuclear spintronic technologies. They h ... read more


CHIP TECH
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

CHIP TECH
Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

CHIP TECH
NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

CHIP TECH
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

CHIP TECH
Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

CHIP TECH
Baikonur Cosmodrome to Be Equipped With Viewing Platforms

30 launches planned in next three fiscals: ISRO chief

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

CHIP TECH
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

CHIP TECH
A cool way to form 2-D conducting polymers using ice

Engineers give invisibility cloaks a slimmer design

Rubber expansion threatens biodiversity and livelihoods

Disney gives sneak peek for planned China theme park




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.