Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Doppler effect found even at molecular level - 169 years after its discovery
by Staff Writers
Corvallis OR (SPX) May 11, 2011


File image.

Whether they know it or not, anyone who's ever gotten a speeding ticket after zooming by a radar gun has experienced the Doppler effect - a measurable shift in the frequency of radiation based on the motion of an object, which in this case is your car doing 45 miles an hour in a 30-mph zone.

But for the first time, scientists have experimentally shown a different version of the Doppler effect at a much, much smaller level - the rotation of an individual molecule. Prior to this such an effect had been theorized, but it took a complex experiment with a synchrotron to prove it's for real.

"Some of us thought of this some time ago, but it's very difficult to show experimentally," said T. Darrah Thomas, a professor emeritus of chemistry at Oregon State University and part of an international research team that has announced its findings in Physical Review Letters, a professional journal.

Most illustrations of the Doppler effect are called "translational," meaning the change in frequency of light or sound when one object moves away from the other in a straight line, like a car passing a radar gun. The basic concept has been understood since an Austrian physicist named Christian Doppler first proposed it in 1842.

But a similar effect can be observed when something rotates as well, scientists say.

"There is plenty of evidence of the rotational Doppler effect in large bodies, such as a spinning planet or galaxy," Thomas said. "When a planet rotates, the light coming from it shifts to higher frequency on the side spinning toward you and a lower frequency on the side spinning away from you. But this same basic force is at work even on the molecular level."

In astrophysics, this rotational Doppler effect has been used to determine the rotational velocity of things such as planets. But in the new study, scientists from Japan, Sweden, France and the United States provided the first experimental proof that the same thing happens even with molecules.

At this tiny level, they found, the rotational Doppler effect can be even more important than the linear motion of the molecules, the study showed.

The findings are expected to have application in a better understanding of molecular spectroscopy, in which the radiation emitted from molecules is used to study their makeup and chemical properties. It is also relevant to the study of high energy electrons, Thomas said.

"There are some studies where a better understanding of this rotational Doppler effect will be important," Thomas said. "Mostly it's just interesting. We've known about the Doppler effect for a very long time but until now have never been able to see the rotational Doppler effect in molecules."

.


Related Links
Oregon State University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Nature of bonding determines thermal conductivity
Munich, Germany (SPX) May 04, 2011
Optical data carriers such as DVDs, Blu-rays and CD-RWs store data in layers of so-called "phase change materials". In the future, these materials will enable the development of fast, non-volatile and energy-saving main memories. A prerequisite for this is a low thermal conductivity. Phase change materials display a surprisingly low thermal conductivity even in the crystalline state. This ... read more


TIME AND SPACE
Space Adventures proposes modified Soyuz TMA for Lunar tourists

BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

TIME AND SPACE
Mars Express Sees Deep Fractures on Mars

Opportunity Images Small Craters

Exploring Rio Tinto Eurobotically

NASA Orbiter Reveals Big Changes in Mars' Atmosphere

TIME AND SPACE
AFIT education paves way to space

Soyuz launch from Europe space base set for October

NASA, Space Community Remember 'Freedom 7'

NASA Selects 'Whipple' Mission for Technology Development

TIME AND SPACE
Top Chinese scientists honored with naming of minor planets

China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

Countdown begins for Chineses space station program

TIME AND SPACE
ISS orbit to be readjusted for Soyuz TMA-20 return

Soyuz is in the launch zone at Europe's Spaceport

Progress Docks To ISS

Russia ferries supplies to space

TIME AND SPACE
ST-2's installation on SYLDA marks the start of final payload integration for Ariane 5's next mission

Arianespace to launch ABS-2 in 2013

GSAT-8 put through its paces

Ariane Ariane 5 enjoys second successful launch for 2011

TIME AND SPACE
What a scorcher: 'Hot Jupiter' puzzle explained

An Earth as Dense as Lead

Astronomers unveil portrait of 'super-exotic super-Earth'

Tuning Into ExoPlanet Radio

TIME AND SPACE
Google notebooks challenge Microsoft

Broadband Lidar Instrument Successfully Tested on NASA's DC-8

Russia says fire put out near radioactive facility

Northrop Grumman Scalable SIRU Guides MESSENGER Spacecraft to Orbit Mercury




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement