Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Domain walls as new information storage medium
by Staff Writers
Mainz, Germany (SPX) Sep 25, 2013


Image of a ferromagnetic ring prepared using a scanning electron microscope: The magnetization (black/white contrast) runs along the ring and forms two domain walls.

While searching for ever smaller devices that can be used as data storage systems and novel sensors, physicists at Johannes Gutenberg University Mainz (JGU) have directly observed magnetization dynamics processes in magnetic nanowires and thus paved the way for further research in the field of nanomagnetism.

Small magnetic domain wall structures in nanowires can be used to store information and, for example, can be used as angle sensors. Initial applications based on magnetic domain walls have been developed and are already in use in sensor technology.

The current findings represent the first experimentally recorded direct imaging of predicted correlations between magnetic spin structure and wall velocity. The newly discovered properties could be used for other future applications in information technology.

Magnetic domains represent regions of uniform magnetization in ferromagnetic materials. Within each domain, the magnetization is aligned in a single direction. At the interface where domains of different magnetization direction meet, the magnetization has to rotate from one direction to another in a so-called domain wall.

At Mainz University, the group of Professor Mathias Klaui is studying the properties of magnetic domains and the dynamics of domains and domain walls in tiny rings on the nanoscale. It is possible to directly observe the motion of domain walls in these rings that have a diameter of some 4 micrometers and are made of permalloy, a soft nickel-iron alloy.

For this purpose, the Mainz physicists have been collaborating with scientists of the BESSY II synchrotron facility at the Helmholtz Center Berlin for Materials and Energy and the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory, Berkeley, USA, as well as with the Technical University of Berlin and the Max Planck Institute for Intelligent Systems in Stuttgart.

The researchers discovered that the velocity of the motion of domain walls is always oscillating.

"This is a new effect that could prove to be useful in the future," said Dr. Andre Bisig, lead author of the paper "Correlation between spin structure oscillations and domain wall velocities," which has recently been published in Nature Communications.

It was also found that the applied method is very effective in reliably moving the domain walls at very high velocities.

"The faster we move the domain wall, the easier it is to control it," said Bisig. Another observation concerns the effects associated with irregularities or defects in the nanowires. According to the results, these effects only become noticeable when domain walls are moving slowly. The faster a domain wall spins, the less relevant is the role played by defects in the material.

While theoretical research concerns itself principally with observing domain wall velocity and its correlation with oscillations in the spin structure, the results obtained also have important implications for applied research.

Domain wall-based sensors are already being used by Sensitec GmbH, Mainz, a cooperating partner of JGU and the Technical University of Kaiserslautern in two projects funded by the state of Rhineland-Palatinate: the Spintronics Technology Platform in Rhineland-Palatinate (STeP) and the Technology Transfer Service Center for New Materials (TT-DINEMA).

"Of particular importance is the fact that we observed unimpeded domain wall motion at high domain wall velocities. This represents highly promising potential for the use of these nanostructures in ultra-fast rotating sensors," added Professor Mathias Klaui.

The research being undertaken by Professor Klaui's team is being funded by an ERC Starting Grant and the Graduate School of Excellence Materials Science in Mainz (MAINZ). In addition, cooperation with Sensitec has resulted in access to a joint EU project involving seven other leading partners expected to start in October 2013 on "Controlling domain wall dynamics for functional devices". A. Bisig et al., Correlation between spin structure oscillations and domain wall velocities, Nature Communications, 4:2328, 27. August 2013.

.


Related Links
Johannes Gutenberg University Mainz
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New computational approaches speed up the exploration of the universe
Odense, Denamark (SPX) Sep 10, 2013
How many different molecules can be created when you release one of the universe's most reactive substances, hydrogen cyanide, in the lab? And will the process create some particularly interesting molecules? That is what scientists call a good question, because hydrogen cyanide seems to have played a role in creating some of life's building blocks. Hydrogen cyanide is an organic compound a ... read more


TECH SPACE
Mission to moon will boost research and awareness

Mighty Eagle Improves Autonomous Landing Software With Successful Flight

Watch Out for the Harvest Moon

Chang'e-3 lunar probe sent to launch site

TECH SPACE
NASA Rover Inspects Pebbly Rocks at Martian Waypoint

Martian Life: Good or Bad?

Communications Tests Go the Distance for MAVEN

Curiosity Rover Detects No Methane On Mars

TECH SPACE
International Partnership Releases Space Exploration Benefits Paper

Iran to send second monkey into space

Voyager's departure from the heliosphere

NASA study is enough to make a person want to stay in bed

TECH SPACE
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

TECH SPACE
Station Crew Readies for Cygnus' Sunday Arrival

American, two Russians take shortcut to space

Tech glitch delays space station berthing to Saturday

Cygnus arrival at ISS delayed by at least 2 days: NASA

TECH SPACE
Arianespace and Astrium sign deal to begin production of 18 new Ariane 5 vehicles

Problems with Proton booster fixed

Decontamination continues at Baikonur after Proton abortive launc

Russia launches three communication satellites

TECH SPACE
ESA selects SSTL to design Exoplanet satellite mission

Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

TECH SPACE
Space oddity: the mystery of 2013 QW1

Domain walls as new information storage medium

Invention jet prints nanostructures with self-assembling material

New Model Should Expedite Development of Temperature-Stable Nano-Alloys




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement