Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Discovery Sheds Light on Ecosystem of Young Galaxies
by Staff Writers
Los Angeles CA (SPX) Sep 05, 2011


File montage of early galazy formation.

A team of scientists, led by Michael Rauch from the Carnegie Observatories, has discovered a distant galaxy that may help elucidate two fundamental questions of galaxy formation: How galaxies take in matter and how they give off energetic radiation.

Their work will be published in the Monthly Notices of the Royal Astronomical Society.

During the epoch when the first galaxies formed, it is believed that they radiated energy, which hit surrounding neutral hydrogen atoms and excited them to the point where they were stripped of electrons.

This produced the ionized plasma that today fills the universe. But little is known about how this high-energy light was able to escape from the immediate surroundings of a galaxy, known as the galactic halo.

The galaxies we observe today tend to be completely surrounded by gaseous halos of neutral hydrogen, which absorb all light capable of ionizing hydrogen before it has a chance to escape.

Rauch and his team, using the Magellan Telescopes at Las Campanas Observatory and archival images from the Hubble Space Telescope, discovered a galaxy with an extended patch of light surrounding it. The object's appearance means that roughly half of the galaxy's radiation must be escaping and exciting hydrogen atoms outside of its halo.

The key to the escape of radiation can be found in the unusual, distorted shape of the newly observed galaxy. It appears that the object had recently been hit by another galaxy, creating a hole in its halo, allowing radiation to pass through.

"The loss of radiation during galactic interactions and collisions like the one seen here may be able to account for the re-ionization of the universe", Rauch said.

"This galaxy is a leftover from a population of once-numerous dwarf galaxies. And looking back to a time when the universe was more dense, crashes between galaxies would have been much more common than today."

The new observation also helps scientists better understand the flow of inbound matter, from which a galaxy originally forms. In the present case, the escaping ionizing radiation illuminated a long train of incoming gas, which is feeding new matter into the galaxy.

The existence of such structures had been predicted by theory, but they had not been seen previously because they barely emit any light of their own.

The co-authors on this paper are George Becker and Martin Haehnelt from the Kavli Institute for Cosmology at Cambridge University, Jean-Rene Gauthier from The Kavli Institute for Cosmological Physics at the University of Chicago, Swara Ravindranath from the Inter-University Centre for Astronomy and Astrophysics, and Wallace Sargent from the Palomar Observatory at California Institute of Technology. Preprint.

.


Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Hubble movies provide unprecedented view of supersonic jets from young stars
Paris, France (ESA) Sep 05, 2011
Astronomers have combined two decades of Hubble observations to make unprecedented movies revealing never-before-seen details of the birth pangs of new stars. This sheds new light on how stars like the Sun form. Stars aren't shy about sending out birth announcements. They fire off energetic jets of glowing gas travelling at supersonic speeds in opposite directions through space. Alth ... read more


STELLAR CHEMISTRY
Armstrong relives historic Moon landing

NASA's Next Generation Robotic Lander Gets Sideways During Test

Moon Express Gets Thumbs-Up from NASA for Developing New Lunar Landing Technology

NASA Moon Mission in Final Preparations for September Launch

STELLAR CHEMISTRY
Rare martian lake delta spotted by Mars Express

Opportunity Begins Study of Martian Crater

Opportunity Studies Rocks on Crater Rim

Epic search for evidence of life on Mars heats up with focus on high-tech instruments

STELLAR CHEMISTRY
Space Agencies Meet To Discuss A Global Exploration Roadmap

Space chief warns Israel losing its edge

Hands-on space experience at German Aerospace Day

Russian Firm Unveils Plan for Space Tourism

STELLAR CHEMISTRY
Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Time Limits for Tiangong

Orbits for Tiangong

STELLAR CHEMISTRY
Wyle Selects Paragon Software For Disaster Recovery Solutions For ISS

Progress 44 accident and its consequences for Space Station

Canadian Robot Repairs Components on the Space Station

Roscosmos plans to return three ISS crew members on Sept 16

STELLAR CHEMISTRY
Kazakhstan won't ban Russian rocket launches from Baikonur

SwRI selected as payload integrator for three NASA suborbital flight opportunities research providers

Ariane 5's upper payload completes its integration at the Spaceport

Third ATV begins its preparations for launch on Ariane 5

STELLAR CHEMISTRY
The diamond planet

Greenhouse Effect Could Extend Habitable Zone

A Planet Made of Diamond

Astronomers Find Ice and Possibly Methane on Snow White

STELLAR CHEMISTRY
Ion armageddon: Measuring the impact energy of highly charged ions

A "nano," environmentally friendly, and low toxicity flame retardant protects fabric

Google doodles a playful mix of art and technology

Penn Physicists Develop New Insight Into How Disordered Solids Deform




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement